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1. INTRODUCTION 

Kleine-Levin Syndrome (KLS) is a rare sleep disorder characterized by prolonged hypersomnia and behavioral 

changes.
[1]

 Initially described in the 19th century and more clearly defined by Critchley and Hoffman in 1942
[2]

, it 

predominantly affects adolescent males, with a prevalence of approximately 1 to 5 cases per million inhabitants.
[3-6]

 In 

addition to hypersomnia, patients often experience hyperphagia, irritability, confusion, and other neuropsychiatric 

symptoms.
[3,7] 
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ABSTRACT 

Kleine-Levin Syndrome (KLS) is a rare sleep disorder characterized by recurrent episodes of hypersomnia and 

behavioral disturbances. Its etiology remains unclear, and the lack of long- term effective treatments has driven the 

search for experimental models to elucidate its underlying pathophysiology and assess novel therapies. Among such 

models, Caenorhabditis elegans stands out due to its simple nervous system, short life cycle, and sleep-like 

behavioral states. In addition, cacao, rich in polyphenols and methylxanthines, has been shown to positively 

influence brain function and synaptic plasticity, suggesting a potential modulatory role in sleep disturbances. This 

review discusses the characteristics of KLS, the advantages of using C. elegans as a study model, and the possible 

role of cacao as a neurological modulator, proposing new therapeutic perspectives. 
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The etiology of KLS remains unclear.
[8]

 Various hypotheses suggest previous respiratory infections
[9]

, genetic 

factors
[10]

, and possible hypothalamic alterations, without consistent evidence of cerebral inflammation.
[11]

 Relapses 

have also been reported following viral infections such as SARS-CoV-2, episodes of stress, alcohol and drug use, as 

well as sleep deprivation.
[12-14] 

 

In the absence of curative treatments, current therapeutic strategies focus on stimulants, antiepileptics, antidepressants, 

and other interventions, though results have been limited.
[9,13]

 Recent trials, such as intranasal photobiomodulation 

and the use of methylene blue, show promising preliminary findings.
[15]

 

 

This scenario underscores the need for robust experimental models to understand the biology of KLS and explore new 

therapeutic approaches. Caenorhabditis elegans, a nematode widely used in neurobiology, provides a valuable platform 

for studying sleep due to its simple nervous system, short life cycle, and well-characterized behaviors.
[16-19]

 C. elegans 

can enter a Dauer state, a form of lethargy induced by adverse conditions
[20-22]

, offering an opportunity to investigate 

sleep regulation and its disturbances. 

 

Cacao, the main component of chocolate, contains polyphenols and methylxanthines with neuroactive properties 

capable of modulating brain function, memory, and synaptic plasticity.
[23-25]

 These characteristics suggest its potential to 

improve sleep quality or alleviate symptoms of disorders such as KLS. This review analyzes the features of KLS, 

highlights the advantages of C. elegans as a study model, and examines the possible role of cacao. 

 

2. Kleine-Levin Syndrome: Pathophysiology and Neurobiological Foundations 

Kleine-Levin syndrome (KLS) is characterized by recurrent episodes of severe hypersomnia, accompanied by behavioral, 

cognitive, and eating disturbances.
[8,26]

 During these episodes, which can last for days or weeks, patients may sleep up to 

20 hours per day. They may also exhibit hyperphagia (with a preference for high-calorie foods), irritability, apathy, 

transient cognitive deficits, and spatiotemporal disorientation.
[27-28]

 These episodes alternate with asymptomatic periods 

and typically resolve gradually in adulthood.
[26] 

 

The pathophysiology of KLS remains unknown. Studies suggest dysfunction in hypothalamic and thalamic circuits 

involved in sleep-wake regulation and cerebral metabolism.
[28]

 Genetic, infectious, environmental, and possibly 

immunological factors may contribute to its manifestation.
[26,27] 

 

Although KLS is generally considered sporadic, emerging genetic evidence suggests a multifactorial, polygenic 

predisposition.
[26-27]

 Variants in the TRANK1 gene, previously linked to neuropsychiatric disorders, may influence 

susceptibility.
[29]

 However, large-scale genomic studies are necessary to confirm its role and elucidate the molecular 

pathways involved. 

 

Current treatments — including stimulants, antiepileptics, antidepressants, lithium, and melatonin — tend to be 

palliative and offer limited short-term efficacy.
[27-30]

 Non- pharmacological interventions, such as intranasal 

photobiomodulation, have shown promising results in isolated cases
[31]

, but robust clinical trials are lacking. The 

absence of standardized, long-term therapies underscores the need for further research and a multidisciplinary 

approach.
[26] 
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3. Animal Models in Sleep Research: The Role of Caenorhabditis elegans 

Simple animal models have provided valuable insights into the regulation of sleep and its underlying mechanisms. 

Among these, Caenorhabditis elegans stands out due to its simplicity, reproducibility, and utility in the behavioral and 

neurobiological study of sleep.
[32-35]

 Its nervous system, comprising only 302 neurons, combined with a simple anatomy, 

short lifespan, and transparent body, allows for the application of advanced genetic techniques, high-resolution 

microscopy, and detailed behavioral observations.
[32,33]

 Under adverse environmental conditions, C. elegans larvae 

enter the Dauer state (L2d), characterized by reduced metabolism, arrested development, and extended longevity.
[33]

 

This adaptive and reversible diapause-like state has been considered a functional analogue of lethargic or sleep-related 

states, providing a useful framework for investigating the modulation of hypometabolic conditions.
[33,36] 

 

The ease of applying RNA interference, CRISPR/Cas9 gene editing, and fluorescent markers, along with the availability 

of mutant and transgenic strains, facilitates the identification of genes and pathways involved in sleep regulation.
[37,34]

 

These attributes make C. elegans a robust experimental platform for generating hypotheses about sleep physiology that 

can subsequently be validated in more complex models. 

 

4. Cocoa as a Neurophysiological Modulator: Components and Mechanisms 

Cocoa is rich in polyphenols (catechins, anthocyanidins, and proanthocyanidins) and methylxanthines (theobromine), 

compounds known for their neuroactive properties. These substances have been associated with improvements in 

cardiovascular health, metabolic function, mood, concentration, and cognitive performance.
[40,42]

 

 

The Cocoa polyphenols present in cocoa possess antioxidant, anti-inflammatory, and vasodilatory properties, exerting 

positive effects on neuronal and synaptic function. Regular intake of these compounds may enhance attention, working 

memory, and processing speed.
[40,43]

 Theobromine, the main methylxanthine in cocoa, exerts a moderate stimulant effect 

on the central nervous system, with a lower incidence of anxiety and insomnia compared to caffeine.
[44,45]

 This profile 

suggests its potential usefulness in modulating alertness and sleep-wake cycles without significant adverse effects. 

 

5. Therapeutic Perspectives: Cocoa in C. elegans as a Model for KLS 

Employing Caenorhabditis elegans to evaluate the effects of cocoa on sleep-analogous states represents an innovative 

approach to exploring potential interventions for Kleine-Levin Syndrome (KLS). Although the nematode does not 

experience ―sleep‖ in the strict sense, the Dauer stage exhibits functional similarities that facilitate the study of lethargy 

modulation, energy homeostasis, and functional recovery.
[32,33] 

 

Preliminary studies using cocoa extracts in post-Dauer larvae have shown improvements in mobility and growth, 

without significant changes in recovery time.
[40]

 These findings suggest that cocoa may influence the organism’s overall 

physiological state, potentially through the modulation of pathways related to energy signaling, oxidative stress, and 

neuronal function.
[38,40] 

 

However, KLS is a complex and multifactorial disorder. Before proposing cocoa as a therapeutic intervention, it is 

necessary to: 

 Characterize its bioactive components. 

 Elucidate the molecular pathways involved. 

 Conduct studies in more complex animal models and controlled clinical trials.
[26-27]
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Integrating simple models such as C. elegans with mammalian research and human clinical studies may guide the 

development of safe and effective therapies for KLS and other sleep disorders lacking long-term treatment options. 

 

Conclusions and Future Perspectives 

Despite its low prevalence, Kleine-Levin syndrome (KLS) poses significant challenges to sleep neuroscience, primarily 

due to its unclear etiology and the absence of curative treatments.
[26,27]

 Its complexity — encompassing genetic, 

neurobiological, immunological, and environmental factors — further complicates the development of effective, long-

lasting therapeutic strategies.
[39] 

 

The use of Caenorhabditis elegans as an experimental model provides a valuable platform for elucidating the 

underlying mechanisms of sleep and generating hypotheses about novel therapeutic pathways.
[32,33]

 Cocoa, owing to its 

content of polyphenols and methylxanthines, shows potential for modulating brain function, although evidence 

supporting its direct role in KLS remains preliminary.
[41] 

 

Future research endeavors should focus on the detailed characterization of cocoa’s active components, the elucidation 

of signaling pathways in more complex models, and the design of controlled clinical trials. By integrating genomic, 

neurobiological, nutritional, and neuroimaging approaches, the field may progress toward more effective, safer, and 

personalized interventions.
[26,38] 

 

In summary, a multidisciplinary and translational approach—combined with the validation of new therapeutic targets—

will advance our understanding of KLS and enhance the clinical management of this and other sleep disorders. 
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