

# World Journal of Pharmaceutical Science and Research

www.wjpsronline.com

**Research Article** 

ISSN: 2583-6579 SJIF Impact Factor: 3.454 Year - 2023 Volume: 2; Issue: 5 Page: 117-122

# POTENTIAL DRUG TARGET IDENTIFICATION IN *BRUCELLA ABORTUS* BY SUBTRACTIVE GENOMICS APPROACH

# Manjushree Awari and Vivek Keshri\*

Article Received: 20 August 2023 || Article Revised: 08 September 2023 || Article Accepted: 29 September 2023

#### **Corresponding Author: Vivek Keshri**

REVA University, School of Applied Sciences, Department of Biotechnology, Bengaluru-560064, Karnataka, India.

# ABSTRACT

The discovery of essential proteins in the pathogenic bacterium *Brucella abortus*, distinct from those in its host, *Bos taurus* (cattle), presents a promising avenue for combating bacterial infections. Using a combination of subtractive genomics and the NCBI's BLAST program, researchers have unveiled new antibiotic candidates through an examination of *Brucella abortus*, the causative agent of brucellosis. This study has spotlighted 64 significant protein sequences out of the total 2976 in *Brucella abortus* that have minimal resemblance to cattle proteins. A thorough investigation has unveiled the involvement of these 64 critical proteins in various metabolic processes, offering novel targets for antibacterial therapy against bovine brucellosis. Within this group of 64 proteins, two highly virulent ones have been identified as potential targets for future drug development efforts, paving the way for innovative treatments.

**KEYWORDS:** Antibacterial intervention; Brucellosis; Cattle (*Bos taurus*); Therapeutic target proteins; Virulent Proteins.

# INTRODUCTION

Brucellosis is a bacterial infection caused by *Brucella* species, most notably *Brucella abortus*, *Brucella melitensis*, *Brucella canis*.<sup>[1]</sup> These can infect both animals (cattle, goats and sheep, swine, dogs, wildlife and others) and humans, resulting in a zoonotic infection.<sup>[1]</sup> The Brucella genus consists of ten species, with eight inhabiting terrestrial environments and two adapted to marine habitats.<sup>[2]</sup> While each species has the potential to infect various host species, it typically exhibits a preference for a particular host. Bovine brucellosis, primarily caused by *Brucella abortus*, poses a significant economic challenge due to the substantial harm it causes to the commercial livestock industry.<sup>[3]</sup> Humans are often exposed to the disease through direct or indirect contact with diseased animals or their products. Controlling brucellosis is imperative due to its dual threat as a zoonotic disease and an economic burden. Searching for new drug targets in bacteria is crucial due to the global impact of brucellosis as a significant public health and economic burden. Current treatment options for brucellosis are limited and often associated with challenges such as prolonged therapy, relapses, and the emergence of antibiotic resistance. By identifying novel drug targets, researchers can develop more effective and specific therapies that target essential bacterial processes, improving treatment outcomes, reducing treatment duration, and minimizing the risk of resistance. *Brucella abortus* is a gram-negative

#### World Journal of Pharmaceutical Science and Research

bacteria, the causative agent of brucellosis in cattle (causing reproductive problems such as abortions, stillbirths, and reduced fertility) and also infects other animals and, less commonly, humans. The bioinformatics approach to novel drug target identification represents a transformative paradigm in modern pharmaceutical research, seamlessly integrating cutting-edge computational techniques with vast biological datasets to unravel complex disease mechanisms and expedite drug discovery. Computational approaches in particular comparative and subtractive genomics have been extensively used to identify novel drug targets in infectious pathogens. These approaches are powerful, speedy and cost-effective in drug discovery and development processes compared to conventional methods. Taking this as an advantage, we implemented a subtractive genomics approach<sup>[4]</sup> to predict potential drug targets in *Brucella abortus* which has fetched two druggable proteins. The current drug target identification will not only enhances patient care and well-being but also contributes to controlling the spread of brucellosis, safeguarding livestock industries, and aligning with broader efforts in combating antimicrobial resistance and promoting One Health initiatives for integrated human, animal, and environmental health.

#### MATERIAL AND METHODS

#### Data retrieval

The protein sequences of *Brucella abortus* and cattle (*Bos taurus*) were obtained from the NCBI database. The bacterial essential genes were acquired from the Database of Essential Gene Database (DEG). [5–8] A collective count of 2,976 sequences of *Brucella abortus*, 26,619 essential proteins from DEG, and 63,628 sequences of *Bos taurus* were obtained. The complete data analysis is depicted in Fig.1.

#### Detection of essential proteins in Brucella abortus

Essential genes in bacteria were identified through BLASTp<sup>[9]</sup> analysis in the DEG (Database of Essential Genes).<sup>[5–8]</sup> BLAST results were then analyzed, with a focus on identifying significant matches to established essential genes in DEG, using specific criteria including an E-value threshold of 1e-10 and an alignment score exceeding 70%. The host *Bos taurus* lacked these essential genes.

#### Metabolic Pathway Analysis

The KAAS (KEGG Automatic Annotation Server) at KEGG performed a metabolic pathway study for the metabolic processes<sup>[10,11]</sup> in different pathways. KAAS performs functional gene annotation by conducting BLAST comparisons against the meticulously curated KEGG GENES database. The outcome comprises KO assignments as well as KEGG pathways that are generated automatically.

### **Prediction of Virulent proteins**

The bi-layer cascade support vector machine (SVM) prediction program VirulentPred<sup>[12]</sup> was utilized to predict sequences of bacterial virulent proteins. In the initial layer, diverse protein sequence features were employed to train and fine-tune SVM classifiers. These classifiers were subsequently cascaded to the second layer SVM classifier to create the ultimate classifier. The selected prediction methods for the query encompassed amino acid composition, dipeptide composition, similarity searching, higher-order dipeptide composition, position-specific scoring matrix (PSSM), and the cascaded SVM module.

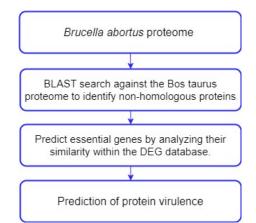



Fig. 1: Flow chart of systematic identification of novel targets in Brucella abortus.

# **RESULT AND DISCUSSION**

Biological strategies have been employed for the identification of essential genes within bacterial organisms, while computational methods have been utilized for the same purpose in prokaryotes. In our study, we focused on Brucella abortus, a cattle pathogenic bacterium, and identified potential antibacterial targets. Our approach involved aligning protein sequences from the NCBI with the DEG essential gene database. From the initial pool of 2976 proteins in Brucella abortus, we identified 423 unique sequences that showed no significant similarity to cattle sequences. Subsequent alignment with the essential gene database yielded 64 strongly matched unique sequences. Functional classification based on gene names or descriptions suggested that these proteins might be specific to the pathogen and play a role in a crucial metabolic pathway. The KEGG GENES database further categorized these 64 significant genes based on their involvement in distinct metabolic pathways, using the KEGG orthology (KO) approach. This database serves as a valuable resource for cross-species genome annotation. The annotated sequences included various proteins such as glycyl-tRNA synthetase alpha chain, chorismate synthase, 3-oxoacyl-[acyl-carrier-protein] synthase II and III, and several others, as detailed in Table 1. These protein sequences represent potential novel targets for further investigation.

#### CONCLUSIONS

In conclusion, the application of the Support Vector Machine (SVM) approach in predicting virulence/non-virulence properties unveiled two virulent proteins (MBT2252796.1 and MBT2253300.1). This prediction/analysis suggests that these essential proteins may play a significant role in the regular functioning of the pathogen within the host. As a result, these proteins hold promise as potential targets for drug development.

| Query Seq.   | KO list | (non)Virulent | Pathways                                                                 |
|--------------|---------|---------------|--------------------------------------------------------------------------|
| MBT2250995.1 | K01581  | Non-Virulent  | E4.1.1.17, ODC1, speC, speF; ornithine decarboxylase                     |
| MBT2251071.1 | K01892  | Non-Virulent  | HARS, hisS; histidyl-tRNA synthetase [EC:6.1.1.21]                       |
| MBT2251078.1 | K04077  | Non-Virulent  | groEL, HSPD1; chaperonin GroEL [EC:5.6.1.7]                              |
| MBT2251083.1 | K01870  | Non-Virulent  | IARS, ileS; isoleucyl-tRNA synthetase [EC:6.1.1.5]                       |
| MBT2251185.1 | K00525  | Non-Virulent  | E1.17.4.1A, nrdA, nrdE; ribonucleoside-diphosphate reductase alpha chain |
| MBT2251186.1 | K00526  | Non-Virulent  | E1.17.4.1B, nrdB, nrdF; ribonucleoside-diphosphate reductase beta chain  |
| MBT2251413.1 | K00382  | Non-Virulent  | DLD, lpd, pdhD; dihydrolipoamide dehydrogenase [EC:1.8.1.4]              |
| MBT2251417.1 | K00658  | Non-Virulent  | DLST, sucB; 2-oxoglutarate dehydrogenase E2 component                    |

 Table 1: KEGG orthology of all essential potential antimicrobial targets.

# World Journal of Pharmaceutical Science and Research

|              |         |                          | (dihydrolipoamide succinyltransferase)                                                                                                                               |
|--------------|---------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |         |                          | OGDH, sucA; 2-oxoglutarate dehydrogenase E1 component                                                                                                                |
| MBT2251418.1 | K00164  | Non-Virulent             | [EC:1.2.4.2]                                                                                                                                                         |
| MBT2251419.1 | K01902  | Non-Virulent             | sucD; succinyl-CoA synthetase alpha subunit [EC:6.2.1.5]                                                                                                             |
| MBT2251421.1 | K00024  | Non-Virulent             | mdh; malate dehydrogenase [EC:1.1.1.37]                                                                                                                              |
| MBT2251469.1 | K01586  | Non-Virulent             | lysA; diaminopimelate decarboxylase [EC:4.1.1.20]                                                                                                                    |
| MBT2251482.1 | K09812  | Non-Virulent             | ftsE; cell division transport system ATP-binding protein                                                                                                             |
| MBT2251505.1 | K14572  | Non-Virulent             | MDN1, REA1; midasin                                                                                                                                                  |
| MBT2251598.1 | K01889  | Non-Virulent             | FARSA, pheS; phenylalanyl-tRNA synthetase alpha chain [EC:6.1.1.20]                                                                                                  |
| MBT2251602.1 | K03686  | Non-Virulent             | dnaJ; molecular chaperone DnaJ                                                                                                                                       |
| MBT2251642.1 | K00647  | Non-Virulent             | fabB; 3-oxoacyl-[acyl-carrier-protein] synthase I [EC:2.3.1.41]                                                                                                      |
| MBT2251678.1 | K02945  | Non-Virulent             | RP-S1, rpsA; small subunit ribosomal protein S1                                                                                                                      |
| MBT2251736.1 | K01681  | Non-Virulent             | ACO, acnA; aconitate hydratase [EC:4.2.1.3]                                                                                                                          |
| MBT2251767.1 | K02470  | Non-Virulent             | gyrB; DNA gyrase subunit B [EC:5.6.2.2]                                                                                                                              |
| MBT2251894.1 | K00812  | Non-Virulent             | aspB; aspartate aminotransferase [EC:2.6.1.1]                                                                                                                        |
|              |         |                          | carB, CPA2; carbamoyl-phosphate synthase large subunit                                                                                                               |
| MBT2251900.1 | K01955  | Non-Virulent             | [EC:6.3.5.5]                                                                                                                                                         |
| MBT2252132.1 | K02622  | Non-Virulent             | parE; topoisomerase IV subunit B [EC:5.6.2.2]                                                                                                                        |
| MBT2252134.1 | K02433  | Non-Virulent             | gatA, QRSL1; aspartyl-tRNA(Asn)/glutamyl-tRNA(Gln)<br>amidotransferase subunit A [EC:6.3.5.6 6.3.5.7]                                                                |
| MBT2252144.1 | K03168  | Non-Virulent             | topA; DNA topoisomerase I [EC:5.6.2.1]                                                                                                                               |
|              |         |                          | argD; acetylornithine/N-succinyldiaminopimelate                                                                                                                      |
| MBT2252380.1 | K00821  | Non-Virulent             | aminotransferase [EC:2.6.1.11 2.6.1.17]                                                                                                                              |
| MBT2252480.1 | K00208  | Non-Virulent             | fabI; enoyl-[acyl-carrier protein] reductase I [EC:1.3.1.9 1.3.1.10]                                                                                                 |
| MBT2252494.1 | K01662  | Non-Virulent             | dxs; 1-deoxy-D-xylulose-5-phosphate synthase [EC:2.2.1.7]                                                                                                            |
|              |         |                          | fabF, OXSM, CEM1; 3-oxoacyl-[acyl-carrier-protein] synthase II                                                                                                       |
| MBT2252517.1 | K09458  | Non-Virulent             | [EC:2.3.1.179]                                                                                                                                                       |
| MBT2252796.1 | K03106  | Virulent                 | SRP54, ffh; signal recognition particle subunit SRP54<br>[EC:3.6.5.4]                                                                                                |
| MBT2252819.1 | K02111  | Non-Virulent             | ATPF1A, atpA; F-type H+/Na+-transporting ATPase subunit alpha<br>[EC:7.1.2.2 7.2.2.1]                                                                                |
| MBT2252821.1 | K02112  | Non-Virulent             | ATPF1B, atpD; F-type H+/Na+-transporting ATPase subunit beta [EC:7.1.2.2 7.2.2.1]                                                                                    |
| MBT2252878.1 | K00615  | Non-Virulent             | tktA, tktB; transketolase [EC:2.2.1.1]                                                                                                                               |
| MBT2252909.1 | K03798  | Non-Virulent             | ftsH, hflB; cell division protease FtsH [EC:3.4.24]                                                                                                                  |
| MBT2252978.1 | K00940  | Non-Virulent             | ndk, NME; nucleoside-diphosphate kinase [EC:2.7.4.6]                                                                                                                 |
| MBT2253022.1 | K01714  | Non-Virulent             | dapA; 4-hydroxy-tetrahydrodipicolinate synthase [EC:4.3.3.7]                                                                                                         |
| MBT2253129.1 | K02469  | Non-Virulent             | gyrA; DNA gyrase subunit A [EC:5.6.2.2]                                                                                                                              |
| MBT2253157.1 | K00382  | Non-Virulent             | DLD, lpd, pdhD; dihydrolipoamide dehydrogenase [EC:1.8.1.4]                                                                                                          |
| MBT2253158.1 | K00627  | Non-Virulent             | DLAT, aceF, pdhC; pyruvate dehydrogenase E2 component<br>(dihydrolipoamide acetyltransferase) [EC:2.3.1.12]                                                          |
| MBT2253159.1 | K00162  | Non-Virulent             | PDHB, pdhB; pyruvate dehydrogenase E1 component beta subunit [EC:1.2.4.1]                                                                                            |
| MBT2253160.1 | K00161  | Non-Virulent             | PDHA, pdhA; pyruvate dehydrogenase E1 component alpha subunit [EC:1.2.4.1]                                                                                           |
| MBT2253163.1 | K01689  | Non-Virulent             | ENO, eno; enolase [EC:4.2.1.11]                                                                                                                                      |
| MBT2253179.1 | K01647  | Non-Virulent             | CS, gltA; citrate synthase [EC:2.3.3.1]                                                                                                                              |
| MBT2253236.1 | K00939  | Non-Virulent             | adk, AK; adenylate kinase [EC:2.7.4.3]                                                                                                                               |
| MBT2253240.1 | K02988  | Non-Virulent             | RP-S5, MRPS5, rpsE; small subunit ribosomal protein S5                                                                                                               |
| MBT2253259.1 | K02358  | Non-Virulent             | tuf, TUFM; elongation factor Tu                                                                                                                                      |
| MBT2253260.1 | K02355  | Non-Virulent             | fusA, GFM, EFG; elongation factor G                                                                                                                                  |
| MBT2253264.1 | K03046  | Non-Virulent             | rpoC; DNA-directed RNA polymerase subunit beta' [EC:2.7.7.6]                                                                                                         |
| MBT2253265.1 | K03043  | Non-Virulent             | rpoB; DNA-directed RNA polymerase subunit beta [EC:2.7.7.6]                                                                                                          |
|              | 1000010 |                          |                                                                                                                                                                      |
| MBT2253272.1 | K02358  | Non-Virulent             | tuf, TUFM; elongation factor Tu                                                                                                                                      |
|              |         | Non-Virulent<br>Virulent | tuf, TUFM; elongation factor Tu<br><b>lptB; lipopolysaccharide export system ATP-binding protein</b><br>E1.17.4.1A, nrdA, nrdE; ribonucleoside-diphosphate reductase |

# World Journal of Pharmaceutical Science and Research

| MBT2253480.1 | K00029 | Non-Virulent | maeB; malate dehydrogenase (oxaloacetate-                        |
|--------------|--------|--------------|------------------------------------------------------------------|
|              |        |              | decarboxylating)(NADP+) [EC:1.1.1.40]                            |
| MBT2253486.1 | K00383 | Non-Virulent | GSR, gor; glutathione reductase (NADPH) [EC:1.8.1.7]             |
|              |        |              |                                                                  |
| MBT2253533.1 | K00342 | Non-Virulent | nuoM; NADH-quinone oxidoreductase subunit M [EC:7.1.1.2]         |
| MBT2253541.1 | K09810 | Non-Virulent | lolD; lipoprotein-releasing system ATP-binding protein [EC:7.6.2 |
|              |        |              |                                                                  |
| MBT2253562.1 | K01756 | Non-Virulent | purB, ADSL; adenylosuccinate lyase [EC:4.3.2.2]                  |
|              |        |              |                                                                  |
| MBT2253589.1 | K01887 | Non-Virulent | RARS, argS; arginyl-tRNA synthetase [EC:6.1.1.19]                |
| MBT2253636.1 | K01876 | Non-Virulent | DARS2, aspS; aspartyl-tRNA synthetase [EC:6.1.1.12]              |
|              |        |              | sufS; cysteine desulfurase / selenocysteine lyase [EC:2.8.1.7    |
| MBT2253698.1 | K11717 | Non-Virulent | 4.4.1.16]                                                        |
|              |        |              |                                                                  |
| MBT2253700.1 | K09013 | Non-Virulent | sufC; Fe-S cluster assembly ATP-binding protein                  |
| MBT2253706.1 | K01866 | Non-Virulent | YARS, tyrS; tyrosyl-tRNA synthetase [EC:6.1.1.1]                 |
| MBT2253767.1 | K01961 | Non-Virulent | accC; acetyl-CoA carboxylase, biotin carboxylase subunit         |
|              |        |              | [EC:6.4.1.2 6.3.4.14]                                            |
|              |        |              |                                                                  |

**Data Availability:** The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. All data generated or analyzed during this study are included in this published article.

**Author contributions:** All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Research funding: None declared

Competing interests: Authors state no conflict of interest.

# REFERENCES

- De Massis F, Zilli K, Donato G Di, et al (2019) Distribution of Brucella field strains isolated from livestock, wildlife populations, and humans in Italy from 2007 to 2015. PLoS One 14. https://doi.org/10.1371/journal.pone.0213689.
- 2. Yu WL, Nielsen K (2010) Review of detection of brucella spp. by polymerase chain reaction. Croat. Med. J., 51: 306–313.
- 3. Khurana SK, Sehrawat A, Tiwari R, et al (2021) Bovine brucellosis-a comprehensive review. Vet. Q., 41: 61-88.
- Keshri V, Singh DP, Prabha R, et al (2014) Genome subtraction for the identification of potential antimicrobial targets in Xanthomonas oryzae pv. oryzae PXO99A pathogenic to rice. 3 Biotech, 4: 91–95. https://doi.org/10.1007/s13205-013-0131-7.
- 5. Luo H, Lin Y, Gao F, et al (2014) DEG 10, an update of the database of essential genes that includes both proteincoding genes and noncoding genomic elements. Nucleic Acids Res, 42. https://doi.org/10.1093/nar/gkt1131.
- Zhang R, Lin Y (2009) DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res, 37: 455–458. https://doi.org/10.1093/nar/gkn858.
- Zhang R, Ou HY, Zhang CT (2004) DEG: a database of essential genes. Nucleic Acids Res, 32. https://doi.org/10.1093/NAR/GKH024.
- Zhang R, Ou HY, Zhang CT (2004) DEG: A database of essential genes. Nucleic Acids Res, 32. https://doi.org/10.1093/nar/gkh024.
- 9. Altschul SF, Gish W, Miller W, et al (1990) Basic local alignment search tool. J Mol Biol, 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.

### www.wjpsronline.com

- 10. Moriya Y, Itoh M, Okuda S, et al (2007) KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 35. https://doi.org/10.1093/nar/gkm321.
- 11. Kanehisa M, Furumichi M, Tanabe M, et al (2017) KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res, 45: D353–D361. https://doi.org/10.1093/nar/gkw1092.
- 12. Garg A, Gupta D (2008) VirulentPred: A SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics, 9: 62. https://doi.org/10.1186/1471-2105-9-62.