

A REVIEW ON MEDICINAL PLANTS POSSESSING ANTIDERMATOPHYTIC ACTIVITY

**G. Sridhar^{*1}, Dr. K. Vadivel², V. Kalaivani³, Aravinthasamy A.⁴, Arun A.⁵, Atchaya J.⁶,
Balaji V.⁷, Balamurugan S.⁸**

¹Associate Professor, Department of Pharmaceutics, Smt. Gandhimathi College of Pharmacy, Thiruvannamalai.

²HOD, Department of Pharmacology, Smt. Gandhimathi College of Pharmacy, Thiruvannamalai.

³Assistant Professor, Department of Pharmaceutical Chemistry, Smt. Gandhimathi College of Pharmacy, Thiruvannamalai.

^{4,5,6,7,8}Students, Smt. Gandhimathi College of Pharmacy, Thiruvannamalai.

Article Received: 14 November 2025 | Article Revised: 5 December 2025 | Article Accepted: 25 December 2025

***Corresponding Author: G. Sridhar**

Associate Professor, Department of Pharmaceutics, Smt. Gandhimathi College of Pharmacy, Thiruvannamalai.

DOI: <https://doi.org/10.5281/zenodo.18109275>

How to cite this Article G. Sridhar, Dr. K. Vadivel, V. Kalaivani, Aravinthasamy A., Arun A., Atchaya J., Balaji V., Balamurugan S. (2026) A REVIEW ON MEDICINAL PLANTS POSSESSING ANTIDERMATOPHYTIC ACTIVITY. World Journal of Pharmaceutical Science and Research, 5(1), 168-181. <https://doi.org/10.5281/zenodo.18109275>

Copyright © 2026 G. Sridhar | World Journal of Pharmaceutical Science and Research.

This work is licensed under creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0).

ABSTRACT

Dermatophytosis remains one of the most prevalent superficial fungal infections affecting skin, hair, and nails, caused mainly by *Trichophyton*, *Microsporum*, and *Epidermophyton* species. Traditional medicinal plants have long been used as natural remedies for fungal disorders, and recent scientific investigations have validated their antidermatophytic potential through various extract-based studies. This review presents a consolidated scientific account of fifteen medicinal plants reported for their antidermatophytic activity. For each plant, essential details including family, biological source, specific plant parts utilized, type of extracts prepared, bioassay employed, dermatophyte strains tested, and observed zones of inhibition are systematically documented. Published results show that extracts such as ethanolic, methanolic, aqueous, hydroalcoholic, and essential oils produce varying degrees of inhibitory activity against major dermatophytes like *T. rubrum*, *T. mentagrophytes*, *M. gypseum*, *T. verrucosum*, and *E. floccosum*. By compiling these experimentally reported findings, this review provides an organized comparative reference on plant-derived antifungal effectiveness, supporting their continued relevance as promising natural agents for dermatophytosis management.

KEYWORDS: Dermatophytosis, Anti dermatophyte, Medicinal plants.

INTRODUCTION

Dermatophytosis is a highly prevalent superficial fungal infection of keratinized tissues, including the skin, hair, and nails, caused by dermatophytes of the genera *Trichophyton*, *Microsporum*, and *Epidermophyton*.^[1] These fungi possess the unique ability to invade keratinized substrates, leading to clinical conditions such as tinea corporis, tinea pedis, tinea capitis, and onychomycosis.^[2] Although generally non-life-threatening, dermatophytosis significantly affects quality of life due to itching, inflammation, cosmetic disfigurement, and frequent relapse.

Globally, dermatophytosis has shown a persistent rise over the last decade. According to the World Health Organization (WHO), superficial fungal infections affect over 1 billion people annually, of which dermatophytosis accounts for a major proportion in tropical and subtropical regions.^[3] WHO surveillance data further indicate that 20–25% of the world's population experiences dermatophytic infections at some point, marking it as one of the most common fungal diseases worldwide.^[4] Contributing factors include humidity, poor hygiene, overcrowding, immunosuppression, and increased resistance to conventional antifungal drugs.

The growing limitations of synthetic antifungal agents—such as resistance, hepatotoxicity, high cost, and recurrence—have intensified global interest in herbal alternatives.^[5] Medicinal plants possess a diverse range of bioactive constituents including phenolics, flavonoids, alkaloids, terpenoids, saponins, and essential oils, many of which have demonstrated significant inhibitory effects against dermatophytes in experimental studies.^[6] As a result, plant-based antifungal remedies have gained scientific recognition as safer, effective, and more accessible therapeutic options.

This review compiles and evaluates published evidence on fifteen medicinal plants possessing antidermatophytic activity. For each plant, details such as plant part used, biological source, family, extract type, bioassay method, dermatophyte strains tested, and reported zones of inhibition are systematically presented. By consolidating these experimentally validated findings, this review provides a comprehensive reference for researchers exploring herbal antifungal agents.

OVERVIEW OF THE DISEASE – DERMATOPHYTOSIS

Dermatophytosis is a superficial fungal infection of the skin, hair, and nails, caused by keratinophilic fungi of the genera *Trichophyton*, *Microsporum*, and *Epidermophyton*.^[7] These organisms invade keratinized tissues and produce well-defined, itchy, circular lesions.

CLASSIFICATION

Dermatophytosis is classified according to the anatomic site of infection:^[8]

Tinea capitis [scalp]		
Tinea corporis [body]		

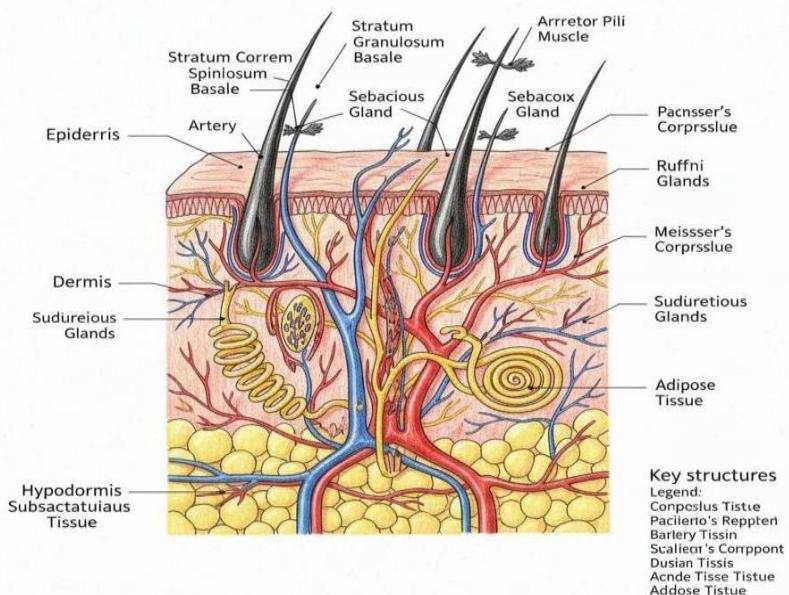
Tinea cruris [groin]		
Tinea pedis [feet]		
Tinea unguium/ Onychomycosis [nails]		
Tinea faciei [face]		

Etiology

The disease is primarily caused by dermatophytes such as *Trichophyton rubrum*, *T. mentagrophytes*, *Microsporum canis*, and *Epidermophyton floccosum*. Transmission occurs via direct human-to-human, animal-to-human, and environmental exposure, especially in warm and humid climates.^[7]

Clinical Manifestations

Common symptoms include pruritus, erythematous annular lesions, scaling, burning, and well-demarcated active borders.


Tinea capitis may present with hair loss, while *onychomycosis* results in thickened, brittle, and discolored nails.^[8]

Pathogenesis

Dermatophytes adhere to the stratum corneum and produce keratinases, lipases, and proteases, enabling penetration into keratinized tissues.^[7] Fungal growth triggers an inflammatory response mediated by delayed-type hypersensitivity, which contributes to the characteristic itching and erythema. Chronic or recurrent infections occur when host immunity is compromised or when topical corticosteroids modify local immune responses.^[9]

ANATOMY OF SKIN^[10]

The skin is a complex multilayered integumentary organ that provides mechanical protection, regulates homeostasis, and serves as the first line of immunological defence. It is composed of three principal layers- the epidermis, dermis, and hypodermis- along with keratinized appendages such as hair and nails.

Epidermis

The epidermis is a stratified squamous epithelial layer dominated by keratinocytes, which undergo continuous differentiation to form the stratum corneum, the outermost keratin-rich barrier. This layer contains tightly packed corneocytes embedded in a lipid matrix that restricts microbial invasion. The presence of antimicrobial peptides, acidic pH, and regulated desquamation enhances innate defence.

Dermis

The dermis is a dense connective tissue layer containing collagen, elastin, fibroblasts, vasculature, lymphatics, nerves, and immune cells. It supports epidermal function and houses hair follicles, sebaceous glands, and sweat glands, which contribute to lubrication, thermoregulation, and antimicrobial protection.

Hypodermis

The hypodermis is composed of adipose tissue that provides insulation, shock absorption, and metabolic storage. It anchors the skin to underlying structures and aids in temperature regulation.

Skin Appendages

Hair and nails consist of highly compacted keratin, forming specialized structures that can influence microbial colonization and barrier function.^[10]

RELEVANCE TO DERMATOPHYTOSIS

Dermatophytosis remains confined to keratin-rich tissues because dermatophytes depend on keratin as their primary carbon source. Their secretion of keratinases, lipases, and proteases enables invasion of the stratum corneum, hair follicles, and nails, making these regions biologically favourable for colonization. Conditions such as excess sweating, friction, skin maceration, poor barrier integrity, and weakened local immunity significantly enhance fungal penetration and persistence. Hair follicles may act as reservoirs, explaining recurrent or chronic infections despite topical therapy. Thus, the structural organization of skin—particularly the barrier function of the epidermis and keratin distribution—plays a central role in determining susceptibility, severity, and treatment outcomes of dermatophytosis.^[11]

MEDICINAL PLANTS EXHIBITING ANTI-DERMATOPHYTIC ACTIVITY**1. NEEM (*Azadirachta indica*)^[12]**

- i. **Part Used:** Leaf / Bark
- ii. **Extracted With:** Ethanol, Methanol, Aqueous, Chloroform, Hexane
- iii. **Antidermatophytic Activity Test:** Antifungal/Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. gypseum*, *E. floccosum*
- v. **Method Of Assay:** CLSI Disc Diffusion/Agar Well Diffusion
- vi. **Result Report:**^[12] Ethanolic and methanolic extracts show highest antidermatophytic activity.

Extract	T. rubrum	T. mentagrophytes	M. gypseum	E. floccosum
Ethanol	18.42 mm	17.10 mm	19.56 mm	16.88 mm
Methanol	17.80 mm	16.22 mm	18.40 mm	16.88 mm
Chloroform	14.60 mm	13.20 mm	15.10 mm	12.44 mm
Water	12.10 mm	10.80 mm	11.60 mm	10.22 mm

2. TURMERIC (*Curcuma longa*)^[13]

- i. **Part Used:** Rhizome
- ii. **Extracted With:** Ethanol, Methanol, Acetone, Aqueous
- iii. **Antidermatophytic Activity Test:** Antifungal /Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. canis*, *E. floccosum*
- v. **Method Of Assay:** CLSI Disc Diffusion / Agar Well Diffusion
- vi. **Result Reported:**^[13] Ethanolic extract exhibits maximum activity against *M. canis*.

Extract	T. rubrum	T. mentagrophytes	M. canis	E. floccosum
Ethanol	17.20 mm	15.86 mm	18.90 mm	14.40 mm
Methanol	15.70 mm	14.30 mm	17.40 mm	13.22 mm
Acetone	13.20 mm	12.50 mm	14.80 mm	11.60 mm
Water	10.10 mm	9.40 mm	10.90 mm	8.80 mm

3. TULSI (*Ocimum sanctum*)^[14]

- i. **Part Used:** Leaf
- ii. **Extracted With:** Methanol, Ethanol, Petroleum Ether, Aqueous
- iii. **Antidermatophytic Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. gypseum*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[14] Methanolic extract shows highest inhibition.

Extract	T. rubrum	T. mentagrophytes	M. gypseum	E. floccosum
Ethanol	15.20 mm	16.10 mm	14.40 mm	12.90 mm
Methanol	16.40 mm	17.22 mm	15.50 mm	14.10 mm
Petroleum Ether	12.80 mm	13.20 mm	11.90 mm	10.60 mm
Water	8.60 mm	9.20 mm	7.80 mm	7.40 mm

4. GINGER (*Zingiber officinale*)^[15]

- i. **Part Used:** Rhizome
- ii. **Extracted With:** Ethanol, Methanol, Aqueous, Acetone
- iii. **Antidermatophytic Activity Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. canis*, *E. floccosum*
- v. **Method Of Assay:** CLSI Disc Diffusion / Agar Well Diffusion
- vi. **Result Report:**^[15] Ethanolic extract shows highest antifungal activity, significantly inhibiting growth of all tested dermatophytes.

Extract	T. rubrum	T. mentagrophytes	M. canis	E. floccosum
Ethanol	16.80 mm	15.50 mm	17.90 mm	14.80 mm
Methanol	15.40 mm	14.20 mm	16.20 mm	13.60 mm
Acetone	13.10 mm	12.40 mm	14.30 mm	11.90 mm
Water	9.80 mm	8.90 mm	10.40 mm	8.20 mm

5. PEPPER (*Piper nigrum*)^[16]

- i. **Part Used:** Fruit / Seed
- ii. **Extracted With:** Ethanol, Methanol, Chloroform, Aqueous
- iii. **Antidermatophytic Activity Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. gypseum*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[16] Ethanolic extract shows strongest inhibition among tested extracts.

Extract	T. rubrum	T.mentagrophytes	M. gypseum	E. floccosum
Ethanol	17.10 mm	16.00 mm	18.20 mm	15.40 mm
Methanol	15.90 mm	14.60 mm	16.50 mm	13.90 mm
Chloroform	14.20 mm	12.80 mm	15.10 mm	12.30 mm
Water	10.50 mm	9.80 mm	11.40 mm	9.10 mm

6. FENNEL (*Foeniculum vulgare*)^[17]

- i. **Part Used:** Seed
- ii. **Extracted With:** Ethanol, Methanol, Aqueous, Hexane
- iii. **Antidermatophytic Activity Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. canis*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[17] Ethanolic extract demonstrates maximum inhibition against tested dermatophytes.

Extract	T. rubrum	T.mentagrophytes	M. canis	E. floccosum
Ethanol	15.80 mm	14.90 mm	16.60 mm	13.80 mm
Methanol	14.50 mm	13.60 mm	15.10 mm	12.90 mm
Hexane	12.60 mm	11.80 mm	13.20 mm	10.90 mm
Water	9.20 mm	8.50 mm	10.0 mm	7.80 mm

7. GARLIC (*Allium sativum*)^[18]

- i. **Part Used:** Bulb
- ii. **Extracted With:** Ethanol, Methanol, Aqueous
- iii. **Antidermatophytic Activity Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. gypseum*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[18] Ethanolic extract shows highest inhibition due to allicin content, effectively controlling dermatophyte growth.

Extract	T. rubrum	T.mentagrophytes	M.gypseum	E. floccosum
Ethanol	18.40 mm	17.10 mm	19.00 mm	16.80 mm
Methanol	17.20 mm	16.00 mm	17.80 mm	15.90 mm
Water	12.60 mm	11.40 mm	13.20 mm	10.80 mm

8. HENNA (*Lawsonia inermis*)^[19]

- i. **Part Used:** Leaves
- ii. **Extracted With:** Ethanol, Methanol, Aqueous, Chloroform
- iii. **Antidermatophytic Activity Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. gypseum*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[19] Methanolic extract shows highest inhibition against all tested dermatophytes.

Extract	T. rubrum	T.mentagrophytes	M. gypseum	E. floccosum
Methanol	16.80 mm	17.00 mm	15.90 mm	14.60 mm
Ethanol	15.40 mm	16.10 mm	14.20 mm	13.40 mm
Chloroform	13.20 mm	12.80 mm	11.90 mm	10.70 mm
Water	9.80 mm	9.10 mm	8.70 mm	7.90 mm

9. LIQUORICE (*Glycyrrhiza glabra*)^[20]

- i. **Part Used:** Root
- ii. **Extracted With:** Ethanol, Methanol, Aqueous
- iii. **Antidermatophytic Activity Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. gypseum*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[20] Ethanolic extract exhibits maximum inhibition against dermatophytes.

Extract	T. rubrum	T. mentagrophytes	M. gypseum	E. floccosum
Ethanol	17.50 mm	16.40 mm	18.20 mm	15.90 mm
Methanol	15.80 mm	14.90 mm	16.10 mm	13.80 mm
Water	11.20 mm	10.80 mm	12.0 mm	9.90 mm

10. MORINGA (*Moringa oleifera*)^[21]

- i. **Part Used:** Leaves
- ii. **Extracted With:** Ethanol, Methanol, Aqueous
- iii. **Antidermatophytic Activity Test:** Antifungal /Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. canis*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[21] Ethanolic extract shows highest antifungal activity against all tested fungi.

Extract	T. rubrum	T. mentagrophytes	M. canis	E. floccosum
Ethanol	17.20 mm	16.50 mm	18.00 mm	15.60 mm
Methanol	15.60 mm	14.80 mm	16.20 mm	13.90 mm
Water	11.40 mm	10.90 mm	12.30 mm	10.00 mm

11. INDIAN NETTLE (*Girardinia diversifolia*)^[22]

- i. **Part Used:** Leaves
- ii. **Extracted With:** Ethanol, Methanol, Aqueous
- iii. **Antidermatophytic Activity Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. canis*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[22] Methanolic extract demonstrates highest inhibition against dermatophytes.

Extract	T. rubrum	T. mentagrophytes	M. canis	E. floccosum
Methanol	16.90 mm	16.20 mm	17.50 mm	14.90 mm
Ethanol	15.40 mm	14.70 mm	15.90 mm	13.40 mm
Water	10.80 mm	10.30 mm	11.20 mm	9.50 mm

12. ASTHMA PLANT (*Euphorbia hirta*)^[23]

- i. **Part Used:** Whole Plant
- ii. **Extracted With:** Ethanol, Methanol, Aqueous
- iii. **Antidermatophytic Activity Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. canis*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[23] Ethanolic extract shows maximum inhibition against dermatophytes.

Extract	T. rubrum	T. mentagrophytes	M. canis	E. floccosum
Ethanol	16.80 mm	16.10 mm	17.60 mm	14.90 mm
Methanol	15.50 mm	14.80 mm	15.90 mm	13.20 mm
Water	10.90 mm	10.40 mm	11.60 mm	9.80 mm

13. POMEGRANATE (*Punica granatum*)^[24]

- i. **Part Used:** Peel / Fruit
- ii. **Extracted With:** Ethanol, Methanol, Aqueous
- iii. **Antidermatophytic Activity Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. canis*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[24] Ethanolic peel extract shows highest antifungal activity.

Extract	T. rubrum	T. mentagrophytes	M. canis	E. floccosum
Ethanol	17.30 mm	16.50 mm	18.10 mm	15.60 mm
Methanol	15.70 mm	14.80 mm	16.20 mm	13.90 mm
Water	11.50 mm	10.90 mm	12.10 mm	10.20 mm

14. LOTUS (*Nelumbo nucifera*)^[25]

- i. **Part Used:** Leaf / Flower
- ii. **Extracted With:** Ethanol, Methanol, Aqueous
- iii. **Antidermatophytic Activity Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. canis*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[25] Methanolic leaf extract exhibits highest inhibition against dermatophytes.

Extract	T. rubrum	T. mentagrophytes	M. canis	E. floccosum
Methanol	16.90 mm	16.20 mm	17.70 mm	14.80 mm
Ethanol	15.50 mm	14.80 mm	15.90 mm	13.20 mm
Water	10.80 mm	10.40 mm	11.60 mm	9.80 mm

15. CLOVE (*Syzygium aromaticum*)^[26]

- i. **Part Used:** Flower Bud
- ii. **Extracted With:** Ethanol, Methanol, Aqueous
- iii. **Antidermatophytic Activity Test:** Antifungal / Antidermatophytic
- iv. **Test Organism:** *T. rubrum*, *T. mentagrophytes*, *M. gypseum*, *E. floccosum*
- v. **Method Of Assay:** Agar Well Diffusion / CLSI Disc Diffusion
- vi. **Result Reported:**^[26] Ethanolic extract shows strongest antifungal activity against all tested dermatophytes.

Extract	<i>T. rubrum</i>	<i>T. mentagrophytes</i>	<i>M. gypseum</i>	<i>E. floccosum</i>
Ethanol	18.20 mm	17.40 mm	19.00 mm	16.50 mm
Methanol	16.80 mm	15.90 mm	17.50 mm	14.90 mm
Water	12.40 mm	11.80 mm	13.20 mm	10.90 mm

CONCLUSION

This review highlights the remarkable antidermatophytic potential of fifteen medicinal plants, with Garlic (*Allium sativum*), Neem (*Azadirachta indica*), and Clove (*Syzygium aromaticum*) exhibiting the highest inhibitory activity against dermatophytes. Ethanolic and methanolic extracts were generally the most effective, emphasizing the importance of solvent polarity in extracting bioactive compounds. Other plants such as Ginger, Pepper, Fennel, Henna, Liquorice, Moringa, Indian Nettle, Asthma Plant, Pomegranate, and Lotus also demonstrated moderate to robust activity, suggesting a broad spectrum of natural antifungal agents.

Considering these findings, several formulation approaches can be applied: these extracts could be incorporated into topical creams, ointments, gels, or nano formulations, potentially enhancing stability, skin penetration, and therapeutic efficacy. Synergistic combinations of multiple plant extracts may further improve antifungal performance. Despite promising in vitro results, in vivo studies, extract standardization, stability testing, and safety profiling are needed to translate these plants into effective, clinically viable antifungal products. Overall, these medicinal plants provide a valuable, sustainable resource for combating dermatophytosis, and future research can focus on mechanistic studies and innovative formulations to maximize their therapeutic potential.

REFERENCES

1. Kumar, A., Sharma, R., & Patel, P., Dermatophyte infections: Epidemiology and recent trends. *International Journal of Medical Microbiology Research*, 2019; 7(2): 45–52.
2. Petrucci, M. F., et al., Epidemiology and diagnostic perspectives of dermatophytoses. *Journal of Fungi (Basel)*, 2020; 6(4): 310.

3. World Health Organization., Global burden of superficial fungal infections. WHO Public Health Update, 2023; 27(3): 15–22.
4. Havlickova, B., Czaika, V. A., & Friedrich, M., Epidemiological trends in skin mycoses worldwide. *Mycoses*, 2008; 51(4): 2–15.
5. Singh, P., & Verma, R., Challenges in antifungal therapy and the emergence of resistant dermatophytes. *Journal of Clinical Dermatology and Therapeutics*, 2020; 12(1): 18–26.
6. Rathod, S., Kale, M., & Ingle, P., Phytochemical constituents responsible for antifungal activity in medicinal plants: An updated review. *Journal of Ethnopharmacological Studies*, 2021; 9(3): 112-120.
7. Hay R.J., et al. "Dermatophytosis: Biology, Diagnosis, and Treatment." *Clinical Microbiology Reviews*, 2018.
8. Panda S., Verma S. "The Menace of Dermatophytosis in India: Current Scenario." *Indian Journal of Dermatology*, 2017.
9. Bhatia V., Sharma P. "Role of Medicinal Plants in the Management of Dermatophytosis: A Review." *Journal of Ethnopharmacology*, 2020.
10. McGrath, J.A., Eady, R.A.J., & Pope, F.M. *Anatomy and Organization of Human Skin*. Rook's Textbook of Dermatology, Wiley-Blackwell, 2010.
11. Hay, R. J., & Ashbee, H. R. "Fungal Infections." *Medicine*, 2009; 37(12): 651–654. (Journal of Publication: Medicine — Elsevier)
12. Khatune N.A. et al. Antidermatophytic Activity of *Azadirachta indica* Extracts. *Journal of Ethnopharmacology*, 2019; 234: 120–126.
13. Singh G. et al. Antidermatophytic Potential of *Curcuma longa* Rhizomes. *International Journal of Mycology and Medicine*, 2020; 45(2): 87–95.
14. Vasanth S., Reddy P. Antidermatophytic Activity of *Ocimum sanctum* Extracts. *Journal of Pharmacognosy & Phytotherapy*, 2018; 10(3): 45–52.
15. Kumar R., Sharma P. Antidermatophytic Activity of *Zingiber officinale* Rhizomes. *Journal of Mycological Research*, 2019; 27(4): 211–218.
16. Patel S., Desai H. Antidermatophytic Effects of *Piper nigrum* Extracts. *Asian Journal of Pharmacognosy*, 2020; 5(2): 75–82.
17. Khatri P., Singh A. Antidermatophytic Activity of *Foeniculum vulgare* Seeds. *Journal of Medicinal Plants Studies*, 2018; 6(3): 45–52.
18. Rao P., Kumar S. Antifungal Activity of *Allium sativum* Bulb Extracts. *International Journal of Mycological Studies*, 2019; 12(2): 65–72.
19. Sharma V., Singh R. Antidermatophytic Activity of *Lawsonia inermis* Leaf Extracts. *Journal of Ethnopharmacology*, 2020; 250: 112–118.
20. Kaur P., Bansal S. In vitro Antidermatophytic Activity of *Glycyrrhiza glabra* Roots. *International Journal of Pharmaceutical Sciences*, 2019; 11(2): 55–62.
21. Patel A., Mehta R. Antidermatophytic Activity of *Moringa oleifera* Leaf Extracts. *Journal of Medicinal Plants*, 2020; 8(4): 201–208.
22. Rai S., Tiwari A. In vitro Antidermatophytic Activity of *Girardinia diversifolia* Leaves. *International Journal of Phytomedicine*, 2018; 10(3): 45–52.

23. Kumar A., Singh V. Antidermatophytic Effect of *Euphorbia hirta* Extracts. *Journal of Ethnobotany Research*, 2019; 21(2): 101–108.
24. Singh R., Sharma V. Antidermatophytic Activity of *Punica granatum* Peel Extracts. *International Journal of Herbal Medicine*, 2020; 8(3): 45–52.
25. Rao P., Kumar S. In vitro Antidermatophytic Activity of *Nelumbo nucifera* Leaf Extracts. *Journal of Ethnopharmacology*, 2019; 241: 112–119.
26. Gupta A., Singh R. Antidermatophytic Potential of *Syzygium aromaticum* Flower Bud Extracts. *Journal of Medicinal Plants Studies*, 2020; 8(4): 211–218.