

World Journal of Pharmaceutical

Science and Research

www.wjpsronline.com

Review Article

ISSN: 2583-6579 SJIF Impact Factor: 5.111 Year - 2025

Volume: 4; Issue: 5 Page: 448-463

UTILIZING PHARMA-GRADE MATERIALS AND STANDARDS IN SOLAR ENERGY TECHNOLOGIES

Trupti Mate¹, Ajay Bhagwat¹, Aditya Shinde*², Pooja Pawar²

¹Assistant Professor, Samarth College of Pharmacy, Belhe, Pune, India 412410. ²Student, Samarth College of Pharmacy, Belhe, Pune, India 412410.

*Corresponding Author: Aditya Shinde

Student, Samarth College of Pharmacy, Belhe, Pune, India 412410.

DOI: https://doi.org/10.5281/zenodo.17369610

How to cite this Article: Trupti Mate, Ajay Bhagwat, Aditya Shinde, Pooja Pawar (2025) UTILIZING PHARMA-GRADE MATERIALS AND STANDARDS IN SOLAR ENERGY TECHNOLOGIES. World Journal of Pharmaceutical Science and Research, 4(5), 448-463. https://doi.org/10.5281/zenodo.17369610

Copyright © 2025 Aditya Shinde | World Journal of Pharmaceutical Science and Research. This work is licensed under creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0).

ABSTRACT

Solar cells, also known as photovoltaic (PV) cells, are devices that convert sunlight directly into electricity. The performance, efficiency, and cost of solar cells are heavily influenced by the materials used in their construction. Over time, various materials have been developed to improve conversion efficiency and reduce manufacturing costs. Traditional silicon-based cells dominate the market due to their high efficiency and stability. However, emerging materials such as perovskites, organic polymers, cadmium telluride (CdTe), and copper indium gallium selenide (CIGS) are gaining popularity for their low-cost fabrication and lightweight properties. Each material presents unique advantages and challenges in terms of energy conversion, environmental impact, and long-term durability. This paper explores the key materials used in solar cell fabrication, their working mechanisms, and their potential in advancing photovoltaic technology.

KEYWORDS: Solar cells, photovoltaic materials, silicon, perovskite, CdTe, CIGS, organic solar cells, energy conversion, renewable energy, photovoltaic efficiency.

INTRODUCTION

As the demand for clean and renewable energy continues to rise, solar energy has emerged as one of the most promising alternatives to fossil fuels. At the heart of this technology are solar cells, or photovoltaic (PV) devices, which directly convert sunlight into electrical energy. The efficiency, cost, and environmental impact of these devices are largely determined by the materials used in their fabrication. Traditionally, silicon-based solar cells have dominated the market due to their reliable performance and mature manufacturing processes. However, the search for cheaper, lighter, and more flexible alternatives has led to the development of new materials such as perovskites, organic

semiconductors, quantum dots, and thin-film compounds like CdTe and CIGS. These materials aim to overcome limitations such as high production costs, rigid structures, and limited absorption efficiency associated with conventional technologies.^[1]

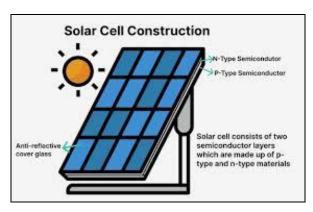


Fig. 1: Solar cells.

This growing diversity in material choices is helping to improve the overall performance of solar cells, reduce their carbon footprint, and open doors to innovative applications — including portable electronics, building-integrated photovoltaics, and wearable devices. Understanding the properties, advantages, and limitations of each material is crucial for guiding future advancements in solar cell technology. With growing global awareness of climate change and energy scarcity, the transition to renewable energy sources has become a major priority. Among the available options, solar energy stands out due to its abundance, sustainability, and environmental friendliness. Harnessing solar energy through photovoltaic (PV) technology enables the direct conversion of sunlight into electricity, offering a clean alternative to conventional power generation methods. At the core of PV technology are solar cells, whose performance and economic feasibility are directly influenced by the materials used in their construction. The choice of material determines crucial parameters such as light absorption capacity, charge carrier mobility, conversion efficiency, and device lifespan. Over the years, a wide range of materials has been explored and developed to enhance these characteristics while reducing manufacturing complexity and costs.

Crystalline silicon, the most widely used material in commercial solar cells, provides high efficiency and long-term stability but comes with limitations such as high energy consumption during production and mechanical rigidity. This has driven research into alternative materials that offer low-cost processing, flexibility, and tunable optical properties. Notable among these are perovskite materials, which have rapidly gained attention for their high efficiency and solution-processable nature, as well as thin-film materials like cadmium telluride (CdTe) and copper indium gallium selenide (CIGS), which allow lightweight and flexible solar modules. Other advanced materials include organic photovoltaic (OPV) materials, quantum dots, and dye-sensitized materials, each with distinct properties suitable for niche or emerging applications. The continuous evolution of these materials is not only enhancing device performance but also enabling integration into non-traditional surfaces such as windows, fabrics, and portable electronics.

OVERVIEW OF SOLAR CELL TECHNOLOGIES

Solar cell technologies have evolved significantly over the past few decades, driven by the need for more efficient, cost-effective, and sustainable energy solutions. These technologies are generally classified into three generations, based on their materials, fabrication methods, and performance characteristics.

1. First-Generation Solar Cells (Conventional Silicon-Based)

• **Material:** Crystalline silicon (monocrystalline and polycrystalline).

Features

- o High efficiency (typically 15–22%).
- o Excellent long-term stability and commercial maturity.
- o Rigid and relatively heavy structures.

Limitations

- o High manufacturing cost and energy-intensive production.
- Limited flexibility and complex installation in some cases.^[4]

2. Second-Generation Solar Cells (Thin-Film Technologies)

Materials

- Cadmium Telluride (CdTe)
- o Copper Indium Gallium Selenide (CIGS)
- Amorphous Silicon (a-Si)

Features

- Lower production cost and material usage.
- Lightweight and flexible substrates possible.
- o Suitable for large-scale and building-integrated photovoltaics.

Limitations

- o Generally lower efficiency (10–15%) compared to silicon cells.
- Some materials (e.g., cadmium) pose environmental and toxicity concerns.^[5]

3. Third-Generation Solar Cells (Emerging and Advanced Materials)

Materials

- Perovskite materials
- o Organic photovoltaic (OPV) materials
- Quantum dots
- Dye-sensitized materials

• Features

- o Potential for high efficiency with low-cost fabrication.
- o Lightweight, semi-transparent, and flexible designs possible.
- Suitable for novel applications like wearables, windows, and mobile devices.

• Challenges

- o Stability and long-term performance need improvement.
- o Many are still under research or early-stage commercialization.

Hybrid Technologies

- **Tandem Solar Cells:** Combine two or more materials with different band gaps to capture a broader spectrum of sunlight.
- **Examples:** Silicon–perovskite tandems, organic–inorganic hybrids.
- **Advantage:** Potential to exceed single-junction efficiency limits (>30%). [6]

PHARMACEUTICAL-RELEVANT MATERIALS IN SOLAR CELLS

While solar cell development is primarily rooted in physics and materials science, **pharmaceutical-relevant materials** and **methods** are increasingly being explored and applied in solar cell research. This crossover has led to innovations in **bio-hybrid solar cells**, **biocompatible materials**, and **green synthess approaches** that align with pharmaceutical and biomedical standards.

1. Organic Polymers and Biocompatible Dyes

• Application in Solar Cells

Organic photovoltaic (OPV) cells often use **conjugated polymers** and **organic dyes**, some of which are chemically similar to materials used in drug formulation and drug delivery systems.

• Pharmaceutical Parallel

These compounds must be **non-toxic**, **biocompatible**, and **stable under physiological conditions**, making them suitable for **implantable solar devices** or biomedical energy systems (e.g., powering biosensors or drug-delivery implants).^[7]

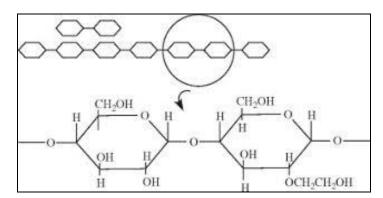


Fig. 2: Organic polymer.

2. Natural and Synthetic Dyes (Used in DSSCs)

• Application in Solar Cells

Dye-Sensitized Solar Cells (DSSCs) employ **natural dyes** like anthocyanins, betalains, or chlorophyll derivatives, which are found in many herbal and pharmaceutical preparations.

• Pharmaceutical Relevance

These dyes are **non-toxic**, **environmentally friendly**, and sourced from **renewable plant materials**, aligning with the pharmaceutical industry's interest in **green chemistry**.

3. Biodegradable Polymers

• Application in Solar Cells

Some emerging solar technologies incorporate **biodegradable polymers** as substrates or encapsulants, inspired by drug delivery systems.

• Pharmaceutical Relevance

Materials like **poly** (**lactic acid**) (**PLA**) and **chitosan**, used in pharmaceutical formulations, are being tested in flexible, degradable, and environmentally safe solar cell designs. [8]

4. Nanocarrier Technologies

• Application in Solar Cells

Techniques borrowed from **nanomedicine**, such as **liposomes**, **niosomes**, and **micelles**, are being explored to control the morphology and interface properties of active solar layers.

• Pharmaceutical Insight

These nanocarriers provide surface area enhancement, layer uniformity, and improved charge transport, similar to how they enhance drug solubility or targeting.

5. Electrolytes and Ionic Liquids

• Application in Solar Cells

Some DSSCs and organic solar cells use **ionic liquids** or **gel-based electrolytes**, many of which are structurally similar to solvents or excipients in pharmaceutical formulations.

• Pharmaceutical Use^[9]

These materials are known for **low volatility**, **biocompatibility**, and **thermal stability**, which are important in both medicine and solar technology.

6. Antioxidants and Stabilizers

• Application in Solar Cells

Antioxidants such as vitamin E analogs, ascorbates, or tocopherols are used to stabilize sensitive solar materials.

• Pharmaceutical Connection

These compounds are commonly used in drug formulations to prevent degradation and improve shelf-life, similarly helping solar cells resist **UV or oxygen-related degradation**.

Shared Synthetic and Analytical Techniques

1. Thin-Film Deposition Techniques

What it is / how it works

- Thin-film deposition refers to methods of laying down very thin layers (often nanometres to micrometers thick) of material onto a substrate.
- Techniques include spin coating (a liquid is spread by spinning the substrate), drop casting (liquid simply deposited
 and solvent evaporated), spray coating, and more advanced ones like chemical vapor deposition, physical vapor
 deposition, etc.

What parameters are controlled?

- Thickness of layer
- Uniformity (smoothness, absence of pinholes)
- Crystallinity or phase of the deposited film^[10]
- Adhesion to substrate

Applications in pharmaceuticals

- In transdermal patches or skin patches, APIs (active pharmaceutical ingredients) are embedded in thin polymer films that deliver drug at controlled rates.
- Coatings on pills or tablets to control release (enteric coatings, sustained release coatings, etc.).

Applications in solar cell research

- The active light-absorbing layer (perovskite, organic polymer, or other semiconductors) is often deposited as a thin film.
- Transport layers (hole transport layer, electron transport layer) need highly uniform and controlled thin films to reduce defects and recombination losses.
- Transparent conductive layers (e.g. ITO, or doped oxides) also deposited via thin-film methods for electrodes. [11]

Why important / what it reveals

- Helps reduce variations in device behavior due to thickness non-uniformity.
- Defects such as pinholes or roughness can cause losses in solar cells or variable release in drug patches.
- Provides control over material microstructure (grain size, orientation) which affects both electrical properties (in solar cells) and diffusion or release characteristics (in pharma films).

2. Sol-Gel and Precipitation Methods

What it is / how it works

- Sol gel: A chemical process where a "sol" (a colloidal suspension of particles) gradually transforms into a "gel" (a network containing a liquid phase), which after drying and heat treatment yields a solid oxide or glassy material.
- **Precipitation**: Producing solid particles by chemical reaction in solution, causing insoluble product to form (precipitate) out of the solution.

Parameters controlled

- Precursor chemistry (what starting chemicals are used)
- pH, temperature, solvent type
- Time of aging (for sols) or reaction
- Heat treatment (calcination)

Applications in pharmaceuticals

- Sol-gel could be used to make porous silica or metal oxide carriers for controlled release of drugs.
- Precipitation is used to prepare drug nanoparticles, poorly soluble drug crystals, or co-precipitated drug-carrier composites to modify solubility or bioavailability.^[12]

Applications in solar cells

- Sol-gel often used to make metal oxide layers like TiO₂ or ZnO which serve as electron transport or blocking layers.
- Precipitation can be used to grow nanocrystals or quantum dots for solar absorption (e.g. in CdS/CdSe or other QD-sensitized cells).

Why important

- Materials produced by sol-gel or precipitation often have fine control over texture and particle size, which affect diffusion, light scattering, charge mobility, etc.
- In pharma, controlling particle size or porosity can affect how fast a drug dissolves, or how it's released.
- In solar, such control affects charge separation, recombination, and ultimately conversion efficiency.

3. Nanoparticle Synthesis and Surface Functionalization

What it is / how it works

- Creating particles in the nano size range (1-100 nm or sometimes larger depending on definition), often with high surface area.^[13]
- Surface functionalization means chemically modifying the surface (adding ligands, coatings, molecules) to adjust properties: solubility, stability, charge, reactivity.

Parameters controlled

- Particle material (metal, semiconductor, polymer, etc.)
- Particle size and size distribution
- Surface chemistry (what groups are present, charge, hydrophilicity/hydrophobicity)
- Stability (aggregation, oxidation)

Applications in pharmaceuticals

- Drug delivery nano-carriers: liposomes, polymeric nanoparticles, micelles, etc. These increase solubility, protect drug, and can target delivery.
- Surface functionalization allows targeting (e.g. antibodies, peptides) or avoiding immune detection.

Applications in solar cells

- Quantum dots (semiconductor nanoparticles) used for light absorption; their band gaps can be tuned via size.
- Nanoparticles in charge transport layers or for plasmonic enhancement (e.g., metal nanoparticles to increase light absorption).
- Surface functionalization to improve interface between nanoparticle and other layers (reduce energy barriers, passivate defects). [14]

Why important

- Nanoparticles can dramatically change physical, optical, electric properties because of their size.
- Surface functionalization helps reduce unwanted recombination in solar cells, or unwanted metabolism or immune response in pharmaceuticals.

4. Spectroscopic Analysis (UV-Vis, FTIR, Raman, etc.)

What it is / how it works

- These techniques probe how materials interact with light (absorb, reflect, emit) or vibrate.
- **UV-Visible** (**UV-Vis**): measures absorption of UV or visible light, revealing band gaps, conjugation, concentration of absorbing chromophores.
- FTIR (Fourier Transform Infrared): looks at vibrational transitions in molecules—identifying functional groups.
- Raman: inelastic scattering; also vibrational information; often complementary to IR. [15]

Parameters revealed

- Chemical identity (what functional groups present)
- Electronic transitions (band gap, absorbance edges in solar materials)
- Concentrations (via absorbance)
- Molecular structure, conjugation, bonding

Applications in pharmaceuticals

- Determining concentration of drug and impurities (via UV-Vis). (Bentham Science)
- Checking drug stability and degradation (functional groups via FTIR or Raman).
- Ensuring correct molecular structure of new drug candidates..

Applications in solar cells

- UV-Vis to measure absorption spectrum of absorber materials (how much of solar spectrum is absorbed).
- FTIR/Raman to check presence of particular bonds, to detect defects, to study degradation (e.g. oxidation, moisture damage).

Why important

- These spectroscopic methods are generally non-destructive, fast, and give molecular or electronic information.
- In solar cells, absorption onset data helps decide the theoretical maximum efficiency and design of multilayer devices.^[16]

5. Thermal Analysis Techniques (DSC, TGA)

What it is / how it works

- **DSC** (**Differential Scanning Calorimetry**): Measures heat flow into or out of a sample as it's heated or cooled e.g., endothermic melting, exothermic crystallization, glass transitions.
- TGA (Thermogravimetric Analysis): Measures mass loss (or gain) of a sample vs temperature useful for studying thermal stability, decomposition, moisture content, etc.

Parameters revealed

- Phase transitions (melting point, crystallization, glass transitions)
- Thermal stability (temperature at which decomposition starts)
- Amount of volatile/inorganic content (from mass loss)
- Effect of additives / plasticizers etc.^[17]

Applications in pharmaceuticals

- Checking melting point, polymorphism (different crystalline forms), compatibility of drug with excipients.
- Ensuring that during storage or manufacture, drug does not degrade or lose volatile parts.

Applications in solar cells

- Stability of absorber materials (perovskites are notorious for being thermally unstable). DSC can detect phase changes.
- TGA can indicate moisture content, degradation temperature, or stability of encapsulants.
- Ensuring materials survive the temperatures they will endure (in operating panels or under sunlight). [18]

6. Microscopy and Imaging (SEM, TEM, AFM, etc.)

What it is / how it works

- SEM (Scanning Electron Microscopy): Uses a focused electron beam to scan surface; gives topography, morphology, fracture surfaces.
- TEM (Transmission Electron Microscopy): Beam passes through extremely thin sample; internal structure, crystallinity, lattice fringes visible.
- AFM (Atomic Force Microscopy): Physical probe feels the surface topography at nanoscale; also measures surface roughness.

Parameters revealed

- Morphology (shape, size, uniformity) of particles or films
- Grain size, porosity, defects, interface quality
- Surface roughness which affects interface contact or charge recombination

Applications in pharmaceuticals

- Morphology of drug crystals/nanoparticles (size, shape) which influence dissolution and bioavailability.
- Surface imaging of coatings, tablets for defects.

Applications in solar cells

- Checking uniformity of thin films; detecting pinholes or cracks.
- Grain boundaries in polycrystalline solar absorbers (these often introduce recombination sites).
- Interface contact quality (for example between perovskite and transport layers). [19]

7. X-Ray Based Techniques (XRD, XPS, etc.)

What it is / how it works

- **XRD** (**X-Ray Diffraction**): Sends X-rays into a crystalline material; diffracted rays produce a pattern characteristic of the crystal structure (unit cell dimensions, phase, crystallite size).
- XPS (X-Ray Photoelectron Spectroscopy): Uses X-ray photons to eject electrons from the surface; measures their kinetic energy to identify elements, oxidation states, chemical environments (but only near the surface).

Parameters revealed

• Phase identification (which crystalline phases are present)

- Lattice constants, crystallite size (from peak width using Scherrer equation)
- Material purity, presence of secondary phases or dopants
- Surface chemical states and composition (oxidation, bonding). [20]

Applications in pharmaceuticals

- Determination of crystal form (polymorph). Drugs can have multiple polymorphs with different solubility and bioavailability.
- Checking for impurities, residual solvents or unreacted reagents.
- Stability studies of medications (does phase change on storage).

Applications in solar cells

- Identifying desired absorber phase (e.g., perovskite phase, or distinguishing between different polymorphs) because different phases have different band gaps and performance.
- Checking whether doping has changed lattice or induced strain.
- Surface chemical states (oxidation, degradation, presence of unwanted surface layers) via XPS.

8. Electrochemical Analysis (Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, etc.)

What it is / how it works

- **EIS** (**Electrochemical Impedance Spectroscopy**): Applies a small AC voltage over a range of frequencies to a device or material; measures how current responds; helps separate resistive and capacitive elements in a system and identify different processes (charge transfer, diffusion, recombination).
- Cyclic Voltammetry (CV): Sweeps voltage linearly back and forth and measures current; shows redox behavior, reaction kinetics.

Parameters revealed

- Resistances (series resistance, charge transfer resistance)
- Capacitances (double layer, chemical capacitance)
- Electron/hole lifetimes, recombination rates, diffusion coefficients
- Reaction kinetics / rate constants. [21]

Applications in pharmaceuticals

- CV to study redox behavior of APIs or excipients (some drugs are redox-active).
- EIS in drug delivery systems: monitoring release (electrochemical changes as drug diffuses), measuring how matrix changes with time. (E.g., in drug release from a calcium phosphate cement studied via EIS)

Applications in solar cells

- EIS used extensively to probe charge transport and recombination in devices like dye-sensitized solar cells (DSCs), perovskite solar cells, etc. Helps in identifying which interfaces or layers are limiting performance.
- CV is used to characterize electrochemical behavior of electrolyte materials, stability, redox mediators in DSSCs, etc.^[22]

BIOCOMPATIBILITY AND TOXICOLOGY OF MATERIALS USED IN SOLAR CELLS

As solar cell technologies evolve, especially for **wearable**, **implantable**, **or environmentally sensitive applications**, understanding the **biocompatibility** and **toxicological profiles** of materials becomes crucial. This is especially relevant when materials overlap with pharmaceuticals or biomedical devices.

1. Definition and Importance

- Biocompatibility refers to the ability of a material to perform its desired function without eliciting any undesirable local or systemic effects in a biological environment.
- **Toxicology** assesses the potential harmful effects of substances on living organisms, including cytotoxicity (cell damage), genotoxicity (DNA damage), and systemic toxicity.
 - For solar cells used near or in the human body—like **biomedical implants**, **wearable electronics**, or **biosensors**—these properties ensure **safety**, **efficacy**, **and long-term functionality**.

2. Materials Commonly Assessed

- Organic Polymers: Many organic solar cells use polymers similar to those in drug delivery systems (e.g., polylactic acid, polyethylene glycol). These materials are often biodegradable and known for low toxicity.
- Inorganic Nanoparticles: Quantum dots (QDs), metal oxides (TiO₂, ZnO), or metal nanoparticles (Ag, Au) are common. Some nanoparticles may induce oxidative stress or inflammatory responses depending on size, dose, and surface chemistry.
- Perovskite Materials: Lead-based perovskites show high efficiency but raise concerns due to lead's toxicity;
 research into lead-free alternatives or encapsulation techniques aims to mitigate risks.

3. Biocompatibility Testing Methods

- In Vitro Cytotoxicity Assays: Testing materials on cultured human or animal cells to detect cell viability, proliferation, and apoptosis after exposure.
- **Hemocompatibility:** Evaluates whether materials cause hemolysis, coagulation, or immune reactions when in contact with blood.^[23]
- In Vivo Implantation Studies: Materials are implanted in animal models to observe tissue reactions, inflammation, fibrosis, or systemic effects over time.
- **Degradation and Leaching Tests:** Analysis of whether materials break down in the body, and whether toxic substances leach out during degradation.

4. Toxicological Concerns in Solar Materials

- Nanoparticle Exposure: Small size facilitates cell penetration and may cause oxidative stress or DNA damage; surface coatings and size control can reduce these effects.
- **Heavy Metal Leaching:** Lead in perovskites or cadmium in some quantum dots pose environmental and health hazards; encapsulation or alternative materials are being developed.
- Polymer Additives and Residual Solvents: Impurities or plasticizers used in film formation may cause adverse
 effects if not fully removed or if released during use. [24]

5. Designing for Safety: Green and Biocompatible Materials

- Bio-derived Dyes and Polymers: Using natural dyes (anthocyanins, chlorophyll) and biodegradable polymers
 reduces environmental impact and toxicity.
- Encapsulation Strategies: Barrier layers prevent direct contact of toxic components with biological tissues or environment.
- Lead-Free and Heavy Metal-Free Alternatives: Development of materials like tin-based perovskites or organic small molecules minimizes toxic risks.

6. Regulatory and Standardization Aspects

- Emerging guidelines and standards for implantable or wearable solar devices require thorough biocompatibility evaluation, often referencing ISO 10993 standards (biological evaluation of medical devices).
- Toxicological data also informs environmental impact assessments, crucial for sustainable technology deployment.

7. Future Outlook

- As solar technologies integrate more with health monitoring, drug delivery systems, and wearables, the overlap with pharmaceutical safety standards will deepen.
- Research is actively ongoing to develop non-toxic, biodegradable, and environmentally friendly solar materials
 that match or exceed current efficiency and stability benchmarks.

PHARMACEUTICAL APPLICATIONS OF SOLAR ENERGY

Solar energy, as a clean and renewable power source, is playing an increasingly important role in various aspects of pharmaceutical sciences—from manufacturing and storage to drug delivery and healthcare accessibility. Integrating solar technologies can enhance sustainability, reduce costs, and enable healthcare in remote or resource-limited areas. [25,26,27]

1. Solar-Powered Pharmaceutical Manufacturing

• Energy Supply for Production

Pharmaceutical manufacturing processes often require reliable, continuous power for equipment such as mixers, dryers, reactors, and sterilizers. Using solar photovoltaic (PV) systems helps reduce dependence on grid electricity, particularly in remote areas or developing countries.

• Sustainable Operations

Incorporating solar power decreases carbon footprint and operational costs, aligning pharmaceutical companies with global environmental goals.

2. Solar Energy for Drug Storage and Refrigeration

• Cold Chain Maintenance

Many vaccines and temperature-sensitive drugs require strict cold storage. Solar-powered refrigeration units enable maintaining the cold chain in off-grid or unreliable power regions, ensuring drug potency and reducing wastage. [16]

• Portable Solar Refrigerators

Useful for vaccination campaigns in rural or disaster-stricken areas where electricity is scarce.

3. Solar-Driven Water Purification for Pharmaceutical Use

• Clean Water Access

Water is essential in pharmaceutical manufacturing and healthcare. Solar energy drives water purification systems (e.g., solar distillation, UV treatment), providing safe water for drug production and medical facilities, especially in areas lacking clean water infrastructure.

4. Solar-Powered Drug Delivery Devices

Wearable and Implantable Devices

Emerging solar-powered drug delivery implants or transdermal patches use solar energy to regulate or trigger drug release, improving patient compliance and enabling controlled therapy.

• Smart Systems

Solar cells integrated into wearable devices can power sensors monitoring drug release or physiological parameters.

5. Solar Energy in Pharmaceutical Research

• Photocatalysis and Solar-Driven Synthesis

Solar light is used to activate photocatalysts that drive chemical reactions, enabling greener synthesis of pharmaceuticals with reduced use of harsh chemicals or high-energy inputs.

• Solar-Powered Analytical Instruments

Portable diagnostic and analytical tools powered by solar cells facilitate pharmaceutical research and quality control in remote locations.^[4]

6. Enhancing Healthcare Delivery with Solar Energy

• Solar-Powered Clinics and Pharmacies

Off-grid medical centers rely on solar power to run essential equipment, lighting, and refrigeration, improving healthcare and pharmaceutical service access in underserved regions.

• Telemedicine Support

Solar energy supports the operation of telemedicine devices, enabling remote pharmaceutical consultations and prescription management.

7. Environmental Sustainability in Pharmaceuticals

 Utilizing solar energy reduces greenhouse gas emissions associated with pharmaceutical production and distribution, supporting sustainable healthcare practices.

SUSTAINABILITY AND REGULATORY ASPECTS

As solar energy technologies expand into healthcare, pharmaceuticals, and environmentally sensitive applications, the focus on **sustainability** and **regulatory compliance** becomes increasingly critical. Ensuring that solar cell materials and manufacturing processes are not only efficient but also **safe**, **eco-friendly**, and **ethically governed** is essential for long-term viability and societal acceptance.^[10]

1. Sustainability in Solar Cell Materials and Manufacturing

a. Resource Efficiency

- Traditional solar cells (especially silicon and perovskite-based) can be energy- and material-intensive to produce.
- Sustainable approaches involve:
- Using abundant, non-toxic materials (e.g. carbon-based electrodes, copper, zinc).
- o Recycling and reusing rare or hazardous materials like indium or lead.
- o Reducing energy consumption during manufacturing (e.g., low-temperature processing techniques).

b. Life Cycle Assessment (LCA)

 A full LCA considers environmental impacts across the product's lifespan — from raw material extraction to endof-life disposal.

• Metrics include

- Energy Payback Time (EPBT)
- Carbon footprint
- Material toxicity and e-waste generation
- o Green alternatives, like **organic or dye-sensitized solar cells**, often offer reduced environmental burden.

c. Waste Management and End-of-Life Strategies

- Disposal of solar panels and associated materials (e.g. lead from perovskites or cadmium from CdTe cells) must follow eco-friendly protocols.^[2]
- Research is growing in recyclable and biodegradable materials, particularly for short-life-span applications like disposable medical or wearable devices.

2. Regulatory Aspects

a. Health and Safety Regulations

- Materials used in biomedical or pharmaceutical-related solar applications (e.g., implantable drug delivery systems)
 must comply with biocompatibility and toxicology standards.
- Common standards include
- o **ISO 10993** (biological evaluation of medical devices)
- o **REACH (EU)** regulates chemical safety
- o RoHS (Restriction of Hazardous Substances) limits use of toxic substances in electronics (e.g., Pb, Hg, Cd)

b. Environmental Compliance

- Manufacturers must ensure compliance with
- WEEE Directive (EU) mandates recycling of electronic waste.
- o **EPA Guidelines (US)** govern emission control, hazardous waste management. [11]
- UN Sustainable Development Goals (SDGs) particularly SDG 7 (clean energy) and SDG 12 (responsible consumption & production).

c. Good Manufacturing Practices (GMP)

 For pharmaceutical applications, devices powered or integrated with solar technologies must be manufactured under GMP-compliant conditions to ensure:

- Product consistency and safety.
- o Traceability of materials.
- o Cleanroom and contamination control (especially important for wearables or implantables).

d. Ethical and Accessibility Considerations

- Solar-powered healthcare solutions must align with principles of universal healthcare access and ethical innovation, especially when deployed in developing or underserved regions.
- Ensuring affordability, reliability, and culturally appropriate deployment is part of broader regulatory responsibility.

3. Integration with Green Pharmacy and Clean Energy Goals

- Green pharmacy aims to reduce the ecological footprint of pharmaceutical manufacturing, which includes:
- Using solar energy to reduce fossil fuel dependence.
- o Applying solar-driven synthesis for green chemistry reactions.
- o Minimizing solvent waste and emissions.
- Solar energy in pharmaceutical labs or production units aligns with.^[17]
- Net-zero emissions targets
- o Corporate sustainability commitments
- o Government incentives and carbon credits

CONCLUSION

The integration of advanced materials in solar cell technology has transformed the landscape of renewable energy, offering highly efficient, scalable, and sustainable solutions. From traditional silicon-based cells to emerging materials like perovskites, organic semiconductors, and nanostructured films, the continuous evolution of material science is enabling higher performance and broader applicability of solar technologies. In the pharmaceutical sector, solar energy plays an increasingly important role—not only in powering manufacturing and storage systems but also in driving innovations in solar-powered drug delivery, diagnostics, and healthcare infrastructure. This cross-disciplinary convergence highlights the shared use of analytical and synthetic techniques between solar and pharmaceutical sciences, promoting innovation that is both technologically advanced and environmentally conscious. However, the widespread use of certain toxic or non-biodegradable materials raises concerns about long-term sustainability and safety.

REFERENCES

- 1. Yin, W.-J., Yang, J.-H., Kang, J., Yan, Y., & Wei, S.-H. Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 2015; 3: 8926–8942. (RSC Publishing)
- 2. Cui, Y., Liang, L., & Gao, P. Promise of commercialization: Carbon materials for low-cost perovskite solar cells. *arXiv preprint*, 2017. (arXiv)
- 3. Al-Ezzi, A. S., & Ansari, M. N. M. Photovoltaic solar cells: A review. *Applied System Innovation*, 2022; 5(4): 67. (MDPI)
- 4. A review on perovskite solar cells (PSCs), materials and applications. *Journal of Materiomics*, 2021. (ScienceDirect)

- 5. Solar Energy Materials Evolution and Niche Applications: A Literature Review, (2021). *Materials* (MDPI). (MDPI)
- 6. Using Solar Energy for Process Heating in Pharmaceuticals. *PharmTech*. (PharmTech)
- 7. Elimination of pharmaceutical pollutants by solar photoelectro-Fenton process. *Environmental Science and Pollution Research*, 2021. (SpringerLink)
- 8. Solar cell materials (Wiley-VCH). Solar Cell Materials (book / reference chapter). (Wiley-VCH)
- 9. Advances in Solar Cell Technologies: A Comprehensive Review of Material Synthesis, Structural Properties, Efficiency and Diverse Applications, (2025). *IJRSI*. (RSIS International)
- 10. Advances in Solar Cell Technologies: A Comprehensive Review, (2025). IJRSI. (RSIS International)
- 11. Comparison and Evaluation of Different Types of Solar Cells. ACE Proceedings. (ewadirect.com)
- 12. Photovoltaic Solar Cells: A Review. Applied System Innovation, 2022; 5(4). (MDPI)
- 13. Materials for solar photovoltaic energy conversion. Boer, K. W.; Rothwarf, A. In *Annual Review of Materials Science*, 1976. (Astrophysics Data System)
- 14. A review on perovskite solar cells (PSCs), materials and applications. *Journal of Materiomics*, 2021. (ScienceDirect)
- 15. Advances in Solar Cell Technologies: A Comprehensive Review IJRSI, 2025. (RSIS International)
- 16. Machine learning for accelerating the discovery of high performance low-cost solar cells: a systematic review, (2022). *arXiv preprint*. (arXiv)
- 17. Advances in Solar Cell Technologies: A Comprehensive Review of Material Synthesis, Structural Properties, Efficiency and Diverse Applications, (2025). *IJRSI*. (RSIS International)
- 18. Using Solar Energy for Process Heating in Pharmaceuticals. *PharmTech*. (PharmTech)
- 19. Photovoltaic Solar Cells: A Review, (2022). MDPI. (MDPI)
- 20. Review and perspective of materials for flexible solar cells. *Materials Reports: Energy*, 2021; 1(1). (ScienceDirect)
- 21. Comparison and Evaluation of Different Types of Solar Cells: A Review. ACE Proceedings. (ewadirect.com)
- 22. Solar cell materials (Wiley-VCH). Solar Cell Materials (book / reference chapter). (Wiley-VCH)
- 23. Advances in Solar Cell Technologies: A Comprehensive Review of Material Synthesis, Structural Properties, Efficiency and Diverse Applications, (2025). IJRSI. (RSIS International)
- 24. Badhe N, Maniyar S, Kadale P, Kale R, Bhagwat A, Doke RR. Advancements in nanotechnology for glaucoma detection and treatment: A focus on biosensors, IOP monitoring, and nano-drug delivery systems.
- 25. Bhagwat A, Lokhande A, Pingat M, Doke R, Ghule S. Strategies and Mechanisms for Enhancing Drug Bioavailability through Co-Amorphous Mixtures-A Comprehensive Review. Research Journal of Pharmacy and Technology, 2025; 18(1): 409-14.
- 26. Bhagwat A, Tambe P, Vare P, More S, Nagare S, Shinde A, Doke R. Advances in neurotransmitter detection and modulation: Implications for neurological disorders. IP Int J Comprehensive Adv Pharmacol, 2024; 9(4): 236-47.
- 27. BHAGWAT, Ajay, et al. Development of Nanoparticles for the Novel Anticancer Therapeutic Agents for Acute Myeloid Leukemia. Int J Pharm Sci Nanotechnol, 2023; 16(4): 6894-906.