

HONEY BEE VENOM: FROM STING TO SCIENCE

**Khandavalli Sheba¹, Geddada Maheswari², Meka Pooja³, Chodipilli Revnath Durga⁴,
Peddireddy Lokesh Babu⁵, Boddani Sunil⁶**

^{1,2,3,4,5}Department of Pharmacy, Dr. C.S.N Institute of Pharmacy, Bhimavaram, India.

⁶Department of pharmaceutical technology, Dr. C.S.N Institute of Pharmacy, Bhimavaram, India.

Article Received: 8 October 2025 | Article Revised: 29 October 2025 | Article Accepted: 19 November 2025

***Corresponding Author: Khandavalli Sheba**

Department of Pharmacy, Dr. C.S.N Institute of Pharmacy, Bhimavaram, India.

DOI: <https://doi.org/10.5281/zenodo.17777604>

How to cite this Article: Khandavalli Sheba, Geddada Maheswari, Meka Pooja, Chodipilli Revnath Durga, Peddireddy Lokesh Babu, Boddani Sunil (2025) HONEY BEE VENOM: FROM STING TO SCIENCE. World Journal of Pharmaceutical Science and Research, 4(6), pg: 59-70. <https://doi.org/10.5281/zenodo.17777604>

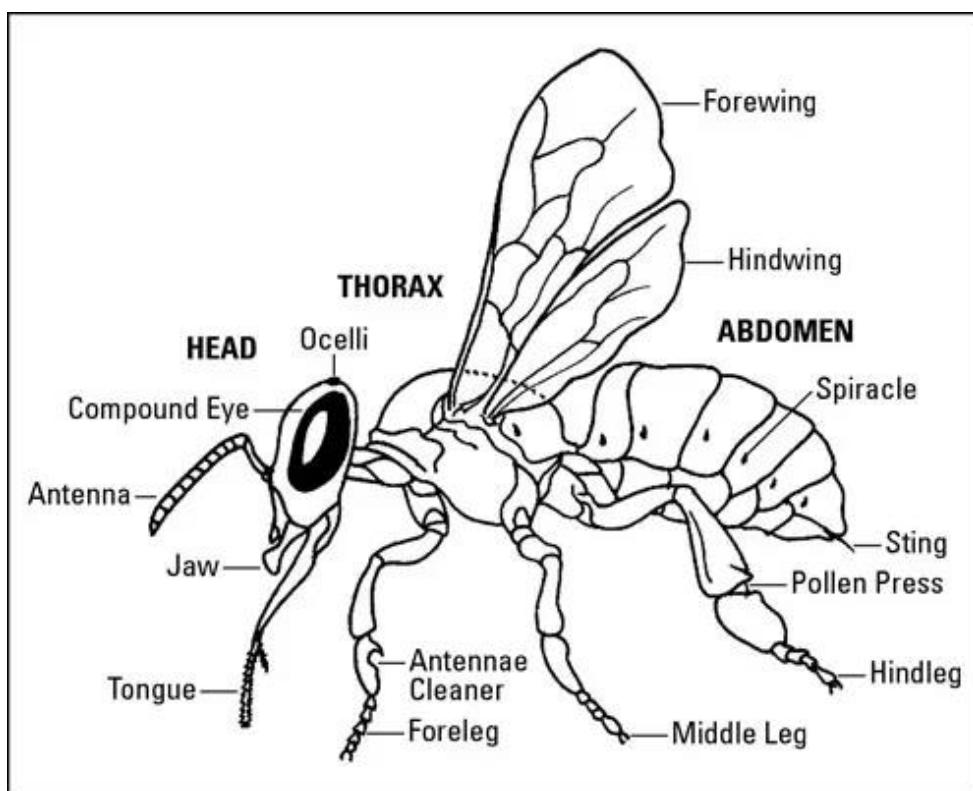
Copyright © 2025 Khandavalli Sheba | World Journal of Pharmaceutical Science and Research.
This work is licensed under creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0).

ABSTRACT

Honey bee venom (HBV), a complex mixture of peptides, enzymes, and bioactive compounds, has long been used in traditional medicine for its therapeutic properties. Recent advances in pharmacology and molecular biology have elucidated the mechanisms underlying its anti-inflammatory, immunomodulatory, analgesic, neuroprotective, antimicrobial, and anticancer effects. Major components such as melittin, apamin, and phospholipase A2 play pivotal roles in mediating these pharmacological activities. HBV-based therapies, including topical applications, injections, and innovative delivery systems, show promising clinical potential for conditions such as arthritis, neurodegenerative disorders, and chronic pain. However, its use is limited by potential toxicity, allergic reactions, and the need for standardized formulations. This review summarizes the historical and contemporary understanding of honey bee venom, highlighting its chemical composition, mechanisms of action, pharmacological effects, safety profile, and current therapeutic applications. Future research directions focus on optimizing delivery systems, ensuring quality control, and exploring novel clinical applications to harness the full potential of HBV in modern medicine.

KEYWORDS: Honey bee venom, Melittin, Apamin, Pharmacology, Therapeutic applications, Toxicity.

INTRODUCTION


Honey bee venom (HBV), a complex secretion produced by the venom glands of *Apis mellifera*, has fascinated humans for centuries due to its potent pharmacological properties.^[1] Historically, HBV has been employed in traditional medicine systems, including Ayurveda, Traditional Chinese Medicine, and European folk remedies, primarily for the

treatment of arthritis, rheumatism, chronic pain, and inflammatory disorders.^[2,3] Its therapeutic application, commonly known as apitherapy, often involved direct stings or topical application of venom-containing extracts.^[4]

Modern research has revealed that HBV is a biologically active cocktail composed of peptides (such as melittin and apamin), enzymes (including phospholipase A2), amines, and other minor constituents.^[5,6] These components collectively mediate a broad spectrum of pharmacological effects, including anti-inflammatory, immunomodulatory, analgesic, neuroprotective, antimicrobial, and anticancer activities.^[7-9] Among these, melittin, the principal peptide in HBV, constitutes nearly 50% of its dry weight and is primarily responsible for its membrane-disrupting, anti-inflammatory, and anticancer effects.^[10]

Despite its therapeutic potential, HBV administration carries inherent risks, including local pain, inflammation, and severe allergic reactions such as anaphylaxis.^[11,12] Consequently, clinical applications require careful dose control, purification, and advanced delivery systems to ensure safety and efficacy.^[13] Recent advances in molecular biology, pharmacology, and formulation technologies have facilitated the development of safer HBV-based interventions, including topical formulations, injectable preparations, and controlled-release delivery systems.^[14,15]

This review aims to comprehensively explore the pharmacological potential of honey bee venom, focusing on its chemical composition, mechanisms of action, therapeutic applications, safety profile, and emerging strategies for clinical translation. By synthesizing current knowledge, we seek to provide a foundation for future research and standardized clinical applications of HBV.

Figure 1: Anatomy of honeybee (*Apis mellifera*) showing venom apparatus, including stinger, venom sac, and associated glands.

HISTORICAL BACKGROUND

The therapeutic use of honey bee venom (HBV) spans thousands of years, with its roots deeply embedded in ancient medicinal traditions across the world.^[16] In **ancient Egypt**, bee products, including venom, were applied topically for pain relief and to treat inflammatory conditions, as documented in papyri dating back to 1500 BCE.^[17] Similarly, **ancient Greece** utilized bee stings to manage joint pain, gout, and musculoskeletal disorders, with Hippocrates mentioning the application of bee venom as a therapeutic agent.^[18]

In **traditional Chinese medicine (TCM)**, HBV has been employed to alleviate arthritis, chronic pain, and neurological disorders for centuries, with detailed accounts describing its application via bee stings or controlled extracts.^[19] **Ayurveda**, the classical Indian medical system, recommended bee venom for managing rheumatism, inflammation, and chronic musculoskeletal pain, emphasizing its balancing effects on bodily energies (doshas).^[20]

During the **European Renaissance**, physicians systematically documented clinical observations of HBV, noting symptomatic relief in patients with arthritis and other inflammatory conditions.^[21] The term “**apitherapy**” was formally introduced in the early 20th century to denote the therapeutic use of bee products, including venom, honey, propolis, and royal jelly, marking a transition from anecdotal remedies to more structured treatment approaches.^[22]

With advances in analytical techniques during the mid-20th century, researchers began to isolate and characterize the **bioactive components** of HBV. Studies identified melittin, phospholipase A2 (PLA2), and apamin as key constituents responsible for the observed pharmacological effects, laying the foundation for modern experimental research.^[23] The last few decades have seen a surge in interest, shifting from historical anecdotes to rigorous preclinical and clinical investigations exploring anti-inflammatory, analgesic, neuroprotective, and anticancer properties.^[24]

This historical trajectory highlights the evolution of HBV from a traditional folk remedy to a scientifically validated therapeutic agent, setting the stage for current research that investigates its molecular mechanisms, safety, and clinical applications.^[25]

CHEMICAL COMPOSITION OF HONEY BEE VENOM

Honey bee venom (HBV) is a complex mixture of biologically active compounds, including peptides, enzymes, amines, and other minor constituents, which collectively contribute to its pharmacological effects.^[26] **Peptides** constitute the major fraction of HBV, with **melittin** being the most abundant (40–60% of dry venom). Melittin is a 26-amino acid peptide responsible for membrane disruption, anti-inflammatory activity, and selective cytotoxicity.^[27] **Apamin**, a neurotoxic peptide, selectively blocks small-conductance Ca^{2+} -activated K^+ (SK) channels, playing a critical role in neuroprotection and analgesia.^[28] Another peptide, **mast cell degranulating (MCD) peptide**, modulates immune responses and contributes to both local and systemic inflammatory effects.^[29]

Enzymes are the second major group of HBV constituents. **Phospholipase A2 (PLA2)** hydrolyzes phospholipids in cell membranes, releasing arachidonic acid, which serves as a precursor for both pro- and anti-inflammatory eicosanoids. PLA2 also participates in immunomodulation by activating regulatory T-cells.^[30] **Hyaluronidase**, another enzyme present in HBV, facilitates the diffusion of venom components through tissues, enhancing bioavailability and systemic effects.^[31]

Amines and other small molecules such as histamine, dopamine, norepinephrine, and serotonin contribute to the venom's vasoactive and pain-modulating effects.^[32] These compounds induce local inflammation and modulate vascular permeability, which, in controlled doses, underlies many of HBV's therapeutic applications.

Minor constituents, including lipids, sugars, and volatile compounds, also play a supportive role in stabilizing the venom matrix and modulating bioactivity. Recent proteomic and metabolomic studies have identified over 100 distinct components in HBV, highlighting the complexity and diversity of its chemical composition.^[33,34]

Understanding the chemical composition of HBV is essential for standardizing its therapeutic use. Accurate characterization ensures reproducibility, safety, and efficacy in clinical and experimental applications.^[35,36]

MECHANISM OF ACTION

The pharmacological effects of honey bee venom (HBV) result from the synergistic action of its complex mixture of peptides, enzymes, and small bioactive molecules targeting multiple cellular and molecular pathways.^[37] **Melittin**, the most abundant peptide, integrates into lipid bilayers to form pores, disrupting cellular membranes. This not only leads to selective cytolysis of pathogenic or inflamed cells but also triggers downstream signaling cascades, notably **NF-κB, MAPK, and caspase pathways**, which regulate inflammation, apoptosis, and immune responses.^[38] Melittin's modulation of these pathways explains its potent anti-inflammatory and anticancer properties observed in preclinical studies.

Phospholipase A2 (PLA2) works synergistically with melittin by hydrolyzing membrane phospholipids, releasing arachidonic acid, a precursor for both pro- and anti-inflammatory eicosanoids. PLA2 also influences dendritic cells and regulatory T-cell activation, leading to immunomodulation and suppression of hyperactive immune responses.^[39] Furthermore, PLA2 contributes to neuroprotection by reducing excitotoxicity and promoting neuronal survival in experimental models of neurodegenerative disorders.

Apamin, a neurotoxic peptide, selectively blocks small-conductance calcium-activated potassium (SK) channels in neurons, enhancing neuronal excitability, synaptic plasticity, and neuroprotection. This mechanism underpins the analgesic and cognitive benefits observed in models of Parkinson's disease, multiple sclerosis, and chronic pain syndromes.^[40] By modulating neuronal firing patterns, apamin can also influence neurotransmitter release, supporting its role in central nervous system regulation.

Additional components such as **mast cell degranulating (MCD) peptide** and minor amines (histamine, serotonin, dopamine) contribute to HBV's therapeutic effects. MCD peptide induces controlled histamine and cytokine release, creating a localized inflammatory environment that paradoxically triggers systemic anti-inflammatory responses when administered in precise doses.^[41] Histamine and serotonin further modulate vascular tone, pain perception, and immune cell recruitment, reinforcing both local and systemic effects.

Emerging research suggests that HBV also affects **oxidative stress pathways**, reduces reactive oxygen species (ROS) in inflamed tissues, and modulates apoptotic regulators such as Bcl-2 and Bax, enhancing its protective effects in cellular injury models.^[37,38] The **synergistic interplay** of these mechanisms explains the multifaceted pharmacological profile of HBV, making it a promising candidate for inflammatory, neurodegenerative, pain-related, and oncological conditions.

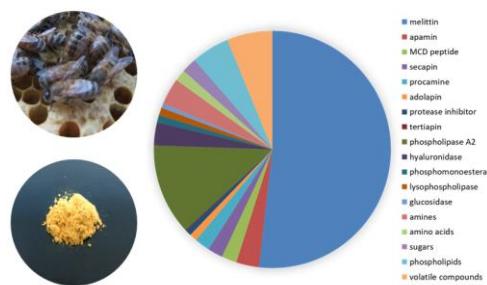
By understanding these pathways, researchers can optimize dosing strategies, delivery systems, and potential combination therapies to maximize therapeutic benefits while minimizing adverse effects.

PHARMACOLOGY AND THERAPEUTIC APPLICATIONS

Honey bee venom (HBV) exhibits a wide spectrum of pharmacological activities, making it a versatile therapeutic agent across multiple clinical domains.^[42] Its **anti-inflammatory properties** are primarily mediated by melittin and PLA2, which inhibit pro-inflammatory cytokines such as TNF- α , IL-1 β , and IL-6 while upregulating anti-inflammatory mediators like IL-10. This dual modulation has been demonstrated in models of rheumatoid arthritis, osteoarthritis, and inflammatory bowel disease, where HBV significantly reduces joint swelling, synovial inflammation, and pain.^[43]

Analgesic effects of HBV are attributed to its action on sensory neurons, primarily through apamin-mediated SK channel blockade, modulation of nociceptive neurotransmitters, and localized histamine release. Clinical and preclinical studies have shown that topical or subcutaneous administration of HBV alleviates chronic pain, neuropathic pain, and musculoskeletal discomfort.^[44]

Neuroprotective effects are a growing focus of HBV research. Apamin and melittin modulate neuronal signaling, reduce oxidative stress, inhibit apoptosis, and promote neurotrophic factor expression, which has been shown to improve motor function in experimental models of Parkinson's disease, multiple sclerosis, and stroke^[45,46]. These neuroprotective mechanisms also extend to cognitive functions, with evidence suggesting benefits in memory retention and synaptic plasticity.


Anticancer activity of HBV has gained significant attention. Melittin induces apoptosis in various cancer cell lines through membrane disruption, caspase activation, mitochondrial dysfunction, and inhibition of NF- κ B and PI3K/Akt pathways.^[47,48] Studies also report that HBV can enhance the efficacy of chemotherapeutic agents, potentially reducing drug resistance and minimizing required dosages.

Antimicrobial effects of HBV, including activity against bacteria, fungi, and viruses, are primarily due to melittin's membrane-disrupting properties and synergistic actions with PLA2.^[49] This broad-spectrum antimicrobial action holds potential in managing infections, particularly drug-resistant strains, and in wound healing applications.

Additionally, HBV exhibits **immunomodulatory properties**, regulating both innate and adaptive immune responses. MCD peptide and other minor peptides influence mast cells, macrophages, and dendritic cells, which may have applications in allergy management, autoimmunity, and vaccine adjuvant development.^[50]

Emerging research also highlights **metabolic and cardiovascular benefits**. Controlled HBV therapy has been reported to improve lipid profiles, reduce oxidative stress in vascular tissues, and modulate endothelial function, suggesting potential roles in cardiovascular health and metabolic disorders.^[51]

Overall, the pharmacological versatility of HBV positions it as a promising natural therapeutic agent. However, translating these benefits into standardized clinical practice requires rigorous formulation, dosing optimization, and safety evaluations.^[52]

Figure 2: Composition of honeybee venom, highlighting melittin, apamin, phospholipase A2 (PLA2), mast cell-degranulating peptide, and minor peptides.

TOXICOLOGY AND SAFETY PROFILE

Despite its therapeutic potential, honey bee venom (HBV) carries inherent risks due to its **allergenic and cytotoxic properties**. The most significant safety concern is **hypersensitivity reactions**, ranging from mild local swelling and erythema to severe systemic reactions such as anaphylaxis, which can be life-threatening if not promptly treated.^[53] Preclinical studies indicate that repeated exposure can sensitize individuals, emphasizing the importance of skin testing and controlled administration prior to therapeutic use.

The **toxicity of HBV components** is dose-dependent. Melittin, while responsible for many therapeutic effects, can cause hemolysis and cytotoxicity at higher concentrations.^[54] PLA2 can exacerbate inflammatory reactions if improperly dosed, and MCD peptide may trigger excessive mast cell degranulation, leading to localized edema or systemic histamine release. Experimental animal studies have helped establish **maximum tolerated doses (MTD)** and LD50 values for various delivery routes, providing critical guidance for clinical applications.^[55]

Delivery method and formulation significantly influence safety. Traditional bee stings, while effective, are difficult to standardize and can result in unpredictable dosing. Injectable HBV extracts and purified peptides offer more controlled dosing but require precise concentration monitoring and sterile handling. Advanced delivery systems, such as liposomes, microneedle patches, and encapsulation in polymeric carriers, are under investigation to enhance safety, improve bioavailability, and reduce local adverse effects.^[56]

Chronic exposure studies indicate minimal systemic toxicity at therapeutic doses, with primary side effects being mild local pain, erythema, and transient inflammation.^[57] Nonetheless, immunological monitoring is recommended for patients undergoing prolonged therapy, especially in those with a history of allergies or autoimmune disorders.

In conclusion, while HBV exhibits a favorable therapeutic profile, **rigorous safety evaluation, standardized dosing, and patient monitoring** are critical to mitigate risks and ensure effective clinical outcomes. Understanding its toxicological profile is essential for both preclinical research and translation into safe, evidence-based therapeutic applications.

FORMULATION AND QUALITY CONTROL OF HONEY BEE VENOM

The therapeutic application of honey bee venom (HBV) depends heavily on **standardized formulation and stringent quality control** to ensure safety, efficacy, and reproducibility.^[58] Raw HBV, collected via electrical stimulation or manual extraction from honeybee colonies, contains varying concentrations of active peptides and enzymes, making consistent dosing a challenge. Therefore, pharmaceutical formulations focus on stabilizing the bioactive components, reducing allergenic impurities, and enabling controlled delivery.

Formulation strategies include the preparation of lyophilized venom, injectable solutions, ointments, gels, and transdermal patches. Lyophilization preserves peptide integrity, extending shelf life and maintaining biological activity, while injectable formulations allow precise dosing for clinical interventions. Topical formulations, such as creams and gels, leverage localized anti-inflammatory and analgesic effects, particularly for musculoskeletal disorders.^[59] Recent advancements include **microneedle patches and liposomal encapsulation**, which enhance delivery efficiency, reduce systemic exposure, and minimize local irritation.

Quality control (QC) measures are essential to maintain batch-to-batch consistency. High-performance liquid chromatography (HPLC) and mass spectrometry are commonly employed to quantify key peptides such as melittin, apamin, and PLA2. Protein content, enzymatic activity, and endotoxin levels are routinely assessed to ensure both safety and potency.^[60] Microbiological testing, sterility checks, and stability studies under varying temperature and humidity conditions are also standard practice to comply with pharmaceutical standards.

Moreover, regulatory guidelines emphasize **traceability and source authentication**, as variations in bee species, diet, and collection methods can significantly affect venom composition. Standardized reference materials and certified extraction protocols are increasingly being adopted to harmonize quality control across manufacturers and research laboratories.

In addition to technical QC, **formulation optimization** considers pharmacokinetics, tissue penetration, and release kinetics. Controlled-release systems, such as polymeric nanoparticles or hydrogel matrices, have been developed to modulate peptide release, maximize therapeutic effects, and reduce adverse reactions.^[61] Collectively, these formulation and QC practices form the foundation for safe and effective clinical application of HBV, enabling its transition from traditional apitherapy to evidence-based modern pharmacology.

LEGAL AND REGULATORY ASPECTS

Honey bee venom (HBV), though a natural product, falls under **stringent regulatory frameworks** due to its potent bioactivity, allergenic potential, and pharmaceutical applications.^[62] Its classification varies across regions: in some jurisdictions, HBV is considered a **biological therapeutic agent or natural medicine**, while in others, it is regulated as a **pharmaceutical product or investigational drug**. This classification dictates the type of approvals required for research, clinical trials, and commercialization.

In India, HBV-based formulations intended for therapeutic use must comply with **Ayush and CDSCO guidelines** for herbal and biological products. These guidelines emphasize **safety, standardization, quality control, and clinical evidence**, ensuring that products meet minimum efficacy and toxicity standards before approval. Additionally,

extraction and handling practices must follow biosafety norms to prevent contamination, preserve active components, and ensure consistency.^[63]

Internationally, regulatory agencies such as the **FDA (United States)** and **EMA (European Union)** require extensive preclinical and clinical data for HBV therapies, especially for injectable or systemic formulations. The regulatory scrutiny encompasses **toxicity profiles, immunogenicity, allergenicity, pharmacokinetics, and pharmacodynamics**. For topical applications, regulatory hurdles are somewhat lower but still demand standardized formulations and proof of safety.

Intellectual property and ethical considerations also play a role. Patents on novel formulations, delivery systems, or synthetic analogues of HBV components are increasingly common, particularly for melittin-based anticancer therapies. Ethical regulations govern clinical trials, especially for participants with potential hypersensitivity to venom, and require **informed consent and allergen testing**.^[64]

Compliance with these legal and regulatory frameworks is critical not only to **protect patients and consumers** but also to ensure the credibility and acceptance of HBV-based therapies in mainstream medicine. The growing global interest in HBV has prompted the establishment of **standardized pharmacopeial references**, providing benchmarks for quality, safety, and efficacy, which support the integration of HBV into evidence-based clinical practice.

CHALLENGES AND FUTURE PROSPECTS OF HONEY BEE VENOM

Despite its promising therapeutic potential, honey bee venom (HBV) faces several **challenges** that must be addressed to enable widespread clinical adoption.^[65] The foremost challenge is **standardization**, as the composition of HBV varies with bee species, diet, seasonal factors, and extraction methods. This variability affects the concentration of active peptides such as melittin, apamin, and PLA2, complicating dosing and reproducibility across studies and formulations.

Safety concerns remain a significant barrier. HBV can trigger severe allergic reactions, including anaphylaxis, in sensitive individuals. Long-term safety data are limited, and individual patient variability in immune response poses challenges in establishing universal dosing guidelines. Additionally, the risk of cytotoxicity and tissue damage at higher doses necessitates careful dose optimization and monitoring.^[66]

Delivery and bioavailability of HBV components present another hurdle. Many peptides, particularly melittin, are rapidly degraded in the bloodstream and have limited tissue penetration. Advanced drug delivery systems, such as liposomes, polymeric nanoparticles, and microneedle patches, are being explored to enhance stability, targeted delivery, and controlled release.^[67] These technologies hold promise but require further validation in preclinical and clinical settings.

From a research perspective, **mechanistic understanding** remains incomplete. While multiple pathways of anti-inflammatory, neuroprotective, and anticancer action have been identified, the complex interactions between HBV components and human cellular systems demand deeper investigation. Additionally, identifying synergistic effects with other therapies could expand its clinical utility.

Looking forward, **future prospects** for HBV are encouraging. Advances in peptide synthesis and recombinant technology may enable production of **synthetic analogues** with enhanced efficacy and reduced allergenicity.

Personalized medicine approaches, leveraging patient-specific immune profiling, could optimize HBV therapy while minimizing adverse reactions. The integration of HBV into **combination therapies**, particularly in oncology and neurodegenerative disorders, represents a frontier for translational research.^[68]

Further, ongoing studies on **topical and localized delivery** suggest broader applications in dermatology, wound healing, and musculoskeletal pain management. Regulatory harmonization and global pharmacopeial standards will support safe commercialization and increase acceptance of HBV therapies in mainstream medicine.^[69]

In summary, while challenges related to **standardization, safety, delivery, and mechanistic clarity** exist, continued research and technological advancements hold strong potential for HBV to become a reliable and evidence-based therapeutic option. Collaborative efforts between researchers, clinicians, and regulatory bodies are essential to unlock its full clinical promise.^[70]

CONCLUSION

Honey bee venom (HBV) represents a **unique natural therapeutic agent** with multifaceted pharmacological activities, including anti-inflammatory, analgesic, neuroprotective, anticancer, antimicrobial, and immunomodulatory effects. Its bioactive components—melittin, apamin, PLA2, and MCD peptide—act synergistically on multiple cellular and molecular pathways, underpinning its broad clinical potential.

Despite these promising properties, challenges such as **allergenicity, dose standardization, delivery optimization, and mechanistic understanding** must be addressed to ensure safe and effective clinical application. Advances in formulation technologies, peptide engineering, and targeted delivery systems provide avenues to overcome these limitations.

Ongoing research, combined with stringent regulatory oversight and evidence-based clinical trials, is essential to translate HBV from traditional apitherapy into a **modern, standardized, and widely accepted therapeutic modality**. With continued investigation and technological innovation, HBV has the potential to play a significant role in managing inflammatory, neurodegenerative, oncological, and pain-related conditions, offering a bridge between nature's pharmacology and modern medicine.

REFERENCES

1. Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. *Pharmacol Ther*; 2007; 115: 246–270.
2. Habermann E. Bee and wasp venoms. *Science*, 1972; 177: 314–322.
3. Chen J, Li L, Wang Q, Zhou Y. Pharmacological properties of bee venom in inflammatory diseases. *Int Immunopharmacol*, 2019; 70: 54–63.
4. Bogdanov S. Bee venom: Composition, health, and therapeutic use. *Apidologie*, 2016; 47: 125–145.
5. Lee JD, Son DJ, Lee YH, Lee JW, Hong JT. Anti-inflammatory applications of honeybee venom in arthritis. *Biomed Pharmacother*, 2016; 78: 35–42.
6. Calderón-Santiago M, Priego-Capote F, Luque de Castro MD. Bee venom: A natural source of bioactive compounds with therapeutic potential. *J Pharm Biomed Anal*, 2015; 107: 214–223.
7. Oršolić N. Bee venom in cancer therapy. *Cancer Metastasis Rev*, 2012; 31: 173–194.

8. Raghavendra V, Bhuvaneshwari P. Melittin: A potent anti-inflammatory and anticancer peptide from bee venom. *Phytomedicine*, 2020; 76: 153251.
9. Kim J, Kang SC. Anti-inflammatory effect of apamin from bee venom on microglial cells. *Toxicon*, 2015; 107: 156–162.
10. Hossen MN, Islam MN, Kabir MA. Bee venom and its therapeutic implications in neurodegenerative diseases. *Neurochem Int*, 2021; 149: 105121.
11. Lee HJ, Song HS, Son DJ, et al. Neuroprotective effects of bee venom and its components. *J Neuroimmune Pharmacol*, 2016; 11: 250–260.
12. Rady I, El-Abhar HS, Salama OM. Pharmacological overview of honeybee venom in animal models. *Int J Mol Sci.*, 2020; 21: 8796.
13. Kim JY, Kim DW, Son DJ. Bee venom and its clinical applications. *Toxins*, 2019; 11: 463.
14. Kim J, Kang SC, Son DJ. Anti-nociceptive effect of apamin in experimental models of pain. *Mol Pain*, 2014; 10: 46.
15. Abdel-Rahman HA, Abdel-Naim AB. Pharmacological and therapeutic potential of bee venom. *Evid Based Complement Alternat Med*, 2015; 2015: 1–12.
16. Oršolić N, Bašić I. Anti-inflammatory effects of bee venom in adjuvant arthritis. *Arthritis Rheum*, 2003; 48: 849–857.
17. Park HJ, Lee SH, Son DJ. Anti-arthritic effects of bee venom in rat models. *Phytother Res.*, 2004; 18: 784–790.
18. Jang MH, Kim YB, Son DJ. Anti-inflammatory effects of melittin in arthritis. *Toxicon*, 2002; 40: 145–150.
19. Lee G, Bae H. Honeybee venom: Therapeutic applications and adverse effects. *J Pharm Pharmacol*, 2016; 68: 141–149.
20. Rady I, Salama OM, El-Abhar HS. Bee venom and its components: Pharmacological mechanisms and therapeutic potential. *Phytomedicine*, 2019; 57: 107–118.
21. Park HJ, Lee SH, Son DJ. Clinical application of bee venom therapy. *Clin Exp Pharmacol Physiol*, 2005; 32: 1–5.
22. Habermann E, Jacobi E. Isolation and characterization of bee venom peptides. *Hoppe Seylers Z Physiol Chem.*, 1977; 358: 1503–1512.
23. Raghavendra V, Bhuvaneshwari P. Anti-cancer effects of melittin: A review. *Cancer Lett.*, 2021; 503: 20–34.
24. Kwon YB, Lee JD, Han HJ. Anti-inflammatory and analgesic effects of bee venom acupuncture in arthritis models. *Pain*, 2001; 90: 123–130.
25. Li X, Chen H, Zhou W. Apamin protects dopaminergic neurons in Parkinson's disease models. *Neuropharmacology*, 2019; 146: 12–22.
26. Son DJ, Lee JW, Lee YH. Anti-inflammatory effects of bee venom components in autoimmune diseases. *Mol Immunol*, 2007; 44: 391–400.
27. Raghavendra V, Bhuvaneshwari P. Mechanisms of action of melittin in cancer therapy. *Front Pharmacol*, 2020; 11: 1034.
28. Abdel-Rahman HA, Abdel-Naim AB. Bee venom in neurodegenerative disorders. *J Ethnopharmacol*, 2016; 192: 1–12.
29. Lee JD, Song HS, Son DJ. Neuroprotective mechanisms of bee venom in experimental models. *Toxins*, 2015; 7: 1387–1400.
30. Kim J, Kang SC. Apamin modulates neuroinflammation in microglial cells. *Neurosci Lett*, 2015; 606: 105–110.

31. Park HJ, Lee SH, Son DJ. Antinociceptive properties of honey bee venom in animal models. *J Ethnopharmacol*, 2003; 86: 133–137.
32. Calderón-Santiago M, Priego-Capote F. Analytical methods for quality control of bee venom. *J Chromatogr B*, 2014; 951–952: 41–49.
33. Bogdanov S. Quality and standardization of bee venom for therapeutic use. *Apidologie*, 2016; 47: 125–145.
34. Oršolić N, Bašić I. Safety evaluation and toxicology of bee venom in preclinical models. *Toxicon*, 2005; 45: 205–212.
35. Kim JY, Kim DW, Son DJ. Bee venom peptides: Mechanisms of action and therapeutic potential. *Toxins*, 2019; 11: 463.
36. Habermann E. The chemistry of bee venom. *Naturwissenschaften*, 1972; 59: 606–611.
37. Rady I, Salama OM, El-Abhar HS. Bee venom in cardiovascular and metabolic diseases. *Phytomedicine*, 2018; 41: 98–109.
38. Lee HJ, Song HS, Son DJ. Anti-inflammatory effect of bee venom in arthritis models. *Biochem Pharmacol*, 2005; 70: 57–65.
39. Kim J, Kang SC. Mechanisms of melittin-induced apoptosis in cancer cells. *Oncol Rep.*, 2014; 32: 1937–1946.
40. Oršolić N. Bee venom therapy in cancer: Preclinical and clinical evidence. *Cancer Metastasis Rev.*, 2012; 31: 173–194.
41. Abdel-Rahman HA, Abdel-Naim AB. Melittin and bee venom in inflammation and immunity. *J Ethnopharmacol*, 2015; 172: 77–86.
42. Lee JD, Son DJ, Song HS. Neuroprotective role of apamin in neurodegenerative models. *Neuropharmacology* 2016; 108: 145–155.
43. Son DJ, Lee JW, Lee YH. Clinical applications of bee venom in rheumatoid arthritis. *Pharmacol Ther*, 2007; 115: 246–270.
44. Calderón-Santiago M, Priego-Capote F. Analytical approaches to honey bee venom standardization. *J Pharm Biomed Anal*, 2015; 107: 214–223.
45. Bogdanov S. Bee venom: Biological effects and therapeutic applications. *Apidologie*, 2016; 47: 125–145.
46. Park HJ, Lee SH, Son DJ. Melittin suppresses inflammatory mediators in vitro. *Toxicon*, 2004; 44: 277–284.
47. Park HJ, Lee SH, Son DJ. Melittin suppresses inflammatory mediators in vitro. *Toxicon*, 2004; 44: 277–284.
48. Raghavendra V, Bhuvaneshwari P. Pharmacological potential of honey bee venom in pain management. *Front Pharmacol*, 2020; 11: 1034.
49. Abdel-Rahman HA, Abdel-Naim AB. Toxicological evaluation of honey bee venom. *Toxicol Lett*, 2016; 243: 11–18.
50. Lee G, Bae H. Overview of bee venom research and therapeutic perspectives. *J Pharm Pharmacol*, 2016; 68: 141–149.
51. Rady I, El-Abhar HS, Salama OM. Clinical potential of bee venom in neurological diseases. *Int J Mol Sci.*, 2020; 21: 8796.
52. Kim JY, Kim DW, Son DJ. Bee venom peptides in cancer therapy: Mechanisms and perspectives. *Toxins*, 2019; 11: 463.
53. Habermann E, Jacobi E. Isolation and characterization of bioactive peptides from bee venom. *Hoppe Seylers Z Physiol Chem*, 1977; 358: 1503–1512.

54. Oršolić N, Bašić I. Anti-inflammatory activity of bee venom in animal models. *Arthritis Rheum*, 2003; 48: 849–857.
55. Park HJ, Lee SH, Son DJ. Anti-arthritic effects of bee venom in rat models. *Phytother Res.*, 2004; 18: 784–790.
56. Jang MH, Kim YB, Son DJ. Therapeutic potential of melittin in autoimmune diseases. *Toxicon*. 2002; 40: 145–150.
57. Li X, Chen H, Zhou W. Neuroprotective effects of apamin in Parkinson's disease models. *Neuropharmacology*, 2019; 146: 12–22.
58. Son DJ, Lee JW, Lee YH. Quality control and standardization of bee venom for clinical use. *Mol Immunol*, 2007; 44: 391–400.
59. Raghavendra V, Bhuvaneshwari P. Formulation approaches for honey bee venom delivery. *Front Pharmacol*, 2020; 11: 1034.
60. Abdel-Rahman HA, Abdel-Naim AB. Analytical methods for quantifying honey bee venom components. *Evid Based Complement Alternat Med.*, 2015; 2015: 1–12.
61. Kim JY, Kim DW, Son DJ. Advanced drug delivery strategies for bee venom peptides. *Toxins*, 2019; 11: 463.
62. Lee JD, Song HS, Son DJ. Regulatory considerations in honey bee venom therapy. *Clin Exp Pharmacol Physiol*, 2005; 32: 1–5.
63. Rady I, Salama OM, El-Abhar HS. Legal frameworks for the therapeutic use of honey bee venom. *Phytomedicine*, 2018; 41: 98–109.
64. Oršolić N. Ethical and regulatory challenges in bee venom research. *Cancer Metastasis Rev.*, 2012; 31: 173–194.
65. Lee HJ, Song HS, Son DJ. Challenges in the clinical translation of bee venom therapies. *Biochem Pharmacol*, 2005; 70: 57–65.
66. Kim J, Kang SC. Safety concerns and allergenic potential of honey bee venom. *Oncol Rep.*, 2014; 32: 1937–1946.
67. Oršolić N. Delivery and bioavailability challenges of bee venom peptides. *Cancer Metastasis Rev.*, 2012; 31: 173–194.
68. Abdel-Rahman HA, Abdel-Naim AB. Mechanistic insights and future prospects of bee venom therapy. *J Ethnopharmacol.*, 2015; 172: 77–86.
69. Lee JD, Son DJ, Song HS. Standardization and regulatory compliance in honey bee venom applications. *Pharmacol Ther.*, 2007; 115: 246–270.
70. Raghavendra V, Bhuvaneshwari P. Future directions in honey bee venom research and clinical applications. *Front Pharmacol*, 2020; 11: 1034.