

World Journal of Pharmaceutical

Science and Research

www.wjpsronline.com

Research Article

ISSN: 2583-6579

SJIF Impact Factor: 5.111 Year - 2025

> Volume: 4; Issue: 5 Page: 808-814

LC-MS/MS CHARACTERIZATION OF BIOACTIVE SECONDARY METABOLITES FROM TWIGS OF ARAUCARIA CUNNINGHAMII

Eneng Lulu Salamah¹, Kurniawanti², Auliya Ilmiawati², Purwantiningsih²*

¹Undergraduate Student Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia.

²Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia.

Article Received: 12 September 2025 | Article Revised: 02 October 2025 | Article Accepted: 24 October 2025

*Corresponding Author: Purwantiningsih

Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia.

DOI: https://doi.org/10.5281/zenodo.17485199

How to cite this Article: Eneng Lulu Salamah, Kurniawanti, Auliya Ilmiawati, Purwantiningsih (2025). LC-MS/MS CHARACTERIZATION OF BIOACTIVE SECONDARY METABOLITES FROM TWIGS OF ARAUCARIA CUNNINGHAMII. World Journal of Pharmaceutical Science and Research, 4(5), 808-814. https://doi.org/10.5281/zenodo.17485199

Copyright © 2025 Purwantiningsih | World Journal of Pharmaceutical Science and Research.

This work is licensed under creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0).

ABSTRACT

Araucaria cunninghamii is a member of the Araucaria genus known to contain diverse bioactive secondary metabolites. This study aimed to identify and characterize the secondary metabolites present in the twigs of A. cunninghamii using LC-MS/MS. Methanolic extracts of A. cunninghamii twigs were chromatographically fractionated and analyzed using LC-HRMS/MS. Fraction FAn14D revealed six compounds, including meranzin and osthol (coumarins), phenylpropanoic acid and benzoic acid (phenolic acids), 4',4"',7,7"-tetra-Omethylcupressuflavone (biflavonoid), and (2E)-3-(3,4-dihydroxyphenyl) acrylate 9,19-cyclolanost-24-en-3-yl (triterpenoid lanostanoid). Benzoic acid was the predominant compound (45% peak area, negative ionization mode). while dioctyl adipate was identified as an instrumental artifact.

KEYWORDS: Araucaria cunninghamii, benzoic acid, biflavonoid, LC-MS/MS, secondary metabolites.

INTRODUCTION

The genus Araucaria (family Araucariaceae) comprises 19 species of evergreen conifers distributed in tropical and subtropical regions. Members of this genus are recognized as rich sources of biflavonoids, a distinctive class of dimeric flavonoids that exhibit a wide range of biological activities, including antibacterial, [1] antimicrobial, [2,3] antifungal, [4] anticancer, [14–19] antidiabetic, [20–24] antioxidants, [4-12] antiviral, [2,8–11] antitumor, [13] and anti-inflammatory effects.[12,21,25,26,27]

Previous studies have successfully isolated nine biflavonoids classified as cupressuflavone, amentoflavone, agathisflavone, and robustaflavone types from leaves acetone extract of *A. hunsteinii*, *A. columnaris*, and *A. cunninghamii*.^[7,18,19,28] Samples of *A. hunsteinii* and *A. columnaris* were collected from the Bogor Botanical Garden. Indonesia. whereas *A. cunninghamii* was obtained from Taman Bunga Nusantara. Indonesia. However, research on the twigs of *A. cunninghamii* remains scarce compared with its leaves. Chen *et al.*^[1] identified several metabolites, including 5-*p*-cis-coumaroylquinic acid, quinic acid, and biflavonoids such as 5,5"-dihydroxy-7,7",4',4"'-tetramethoxy biflavone and 4',7,7"-trimethoxy cupressuflavone, from twig and leaf extracts of *A. cunninghamii*, while labdane-type diterpenes were found in its resin.^[29] Environmental factors such as light intensity, temperature, humidity, and geographical location can influence the biosynthesis of secondary metabolites. Considering these gaps this study aimed to characterize and identify secondary metabolites from *A. cunninghamii* twigs using LC–HRMS/MS, thereby providing a foundation for future investigations on their bioactivity and pharmacological potential.

MATERIALS AND METHODS

Twigs of *A. cunninghamii* were collected from Taman Bunga Nusantara, Cianjur, Indonesia (voucher: FIPIA-DEP61). Reagents included analytical-grade methanol, n-hexane, Merck® silica gel 60 F₂₅₄ (0.25 mm), CeSO₄·4H₂O, and LC-MS/MS-grade solvents. The instruments used included standard laboratory glassware, a Sephadex LH-20 column chromatography setup (30 × 20 cm), and a Thermo Scientific Vanquish Flex UHPLC system coupled with a Q Exactive Plus Orbitrap High-Resolution Mass Spectrometer (Thermo Scientific, Munich, Germany). Data acquisition was performed with Xcalibur 2.0.7, and metabolomic analysis was conducted using MetaboAnalyst 5.0 (https://www.metaboanalyst.ca).

Fifty grams of dry twigs were macerated in methanol (1:5 w/v) for 72 hours with solvent renewal every 24 hours at room temperature. The filtrates were pooled and concentrated under reduced pressure. The crude extract was defatted with n-hexane and re-dissolved in methanol and treated to remove chlorophyll and tannins. Silica-gel column chromatography (CC) was performed after vacuum liquid chromatography (VLC) on the resultant fraction. A C18 column with a mobile phase consisting of (A) water + 0.1% formic acid and (B) acetonitrile + 0.1% formic acid was used for the LC-HRMS/MS analysis of the most simplified fraction (FAn14D) during a 33-minute gradient program at a flow rate of 0.2 mL/min.

RESULTS AND DISCUSSION

Using both ionization modes enhanced metabolite coverage and ensured the detection of compounds with varying polarity. (**Figure 1.**). Triterpenoids, biflavonoids, phenolic acids, and coumarins were the six secondary metabolites that were found (**Table 1.**). Benzoic acid was the predominant metabolite (45% area), followed by minor components such as meranzin, ostol, and 4',4"',7,7"-tetra-O-methylcupressuflavone. The characteristic fragmentation peaks at m/z 135 and 121 confirmed the presence of biflavonoid-type compounds.

Two phenolic acids, 3-phenylpropanoic acid (m/z 150.0681 [M+H]⁺, rt 20.39 min) and benzoic acid (m/z 122.0359 [M+H]⁺, rt 6.85 min), were detected. Similar derivatives have been reported in *A. cunninghamii* twigs.^[1] 3-Phenylpropanoic acid, previously isolated from *Nicotiana spp.*, exhibits antibacterial activity against *Staphylococcus aureus*.^[30]

The biflavonoid identified at a retention time of 22.79 min (m/z 594.1526 [M+H]⁺) corresponded to 4',4"',7,7"-tetra-O-methylcupressuflavone, whose MS fragmentation pattern (**Figure 2**) matched that reported by Sugita et al., [18] Kurniawanti et al. [7] and Sugita et al., [31] This compound is newly reported in the twigs of *A. cunninghamii*.

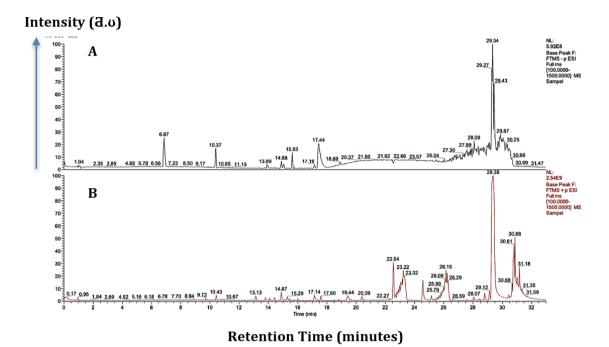


Figure 1: Base peak chromatogram of A. cunninghamii twig extract in (A) negative and (B) positive modes.

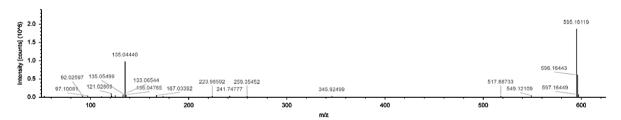


Figure 2: Mass spectrum identified at a retention time of 22.79 min (m/z 594.1526 [M+H]⁺).

Two coumarin derivatives were detected, namely meranzin and osthol. Osthol ($C_{15}H_{16}O_3$) emerged at 13.79 minutes (m/z 244.1099 [M+H]⁺), whereas meranzin ($C_{15}H_{16}O_4$) was found at a retention time of 14.41 minutes (m/z 260.1049 [M+H]⁺). While osthol is frequently found in members of the Apiaceae family, [32] meranzin has previously been isolated from *Citrus aurantium*. Additionally, coumarins have been found in *A. columnaris* Hook, [6] confirming that the genus Araucaria contains them. The antidepressant properties of meranzin and osthol, two of the known coumarin derivatives, have been researched the most. Interestingly, meranzin is the only coumarin derivative that is now known to be a part of the brain-gut-microbiota antidepressant route. [33]

Table 1: Putative identification of A. cunninghamii twig extracts by LC-MS/MS.

Struture	Retention time (minutes)	Molecular weight (m/z)	Molecular formula	Class	Mass error (ppm)
ОН	6.85	122.0359	$C_7H_6O_2$	Phenolic acid	-7.50
	13.79	244.1099	$C_{15}H_{16}O_3$	Coumarin	+1.18
	14.41	260.1049	$C_{15}H_{16}O_4$	Coumarin	+1.00
но	20.39	150.0681	$C_9H_{10}O_2$	Phenolic acid	+1.06
H ₃ C O CH ₃	22.79	594.1526	$C_{34}H_{26}O_{10}$	Biflavonoid	+0.68
но он	25.89	588.4179	C ₃₉ H ₅₆ O ₄	Terpenoid	+4.52
	29.34	379.3083	$C_{22}H_{42}O_4$	Ester	+0.25

The triterpenoid (2*E*)-3-(3,4-dihydroxyphenyl) acrylate 9,19-cyclolanost-24-en-3-yl (m/z 588.4179 [M+H] $^+$, a retention time of 25.89 min) belongs to the lanostanoid group, analogous to compounds found in *Calystegia sylvatica*. The major signal in the positive mode corresponded to dioctyl adipate (DOA, m/z 408.2645 [M+H] $^+$), a known plasticizer artifact, emphasizing the need for stringent quality control to prevent contamination during analysis.

CONCLUSION

This study successfully identified and characterized six secondary metabolites from *A. cunninghamii* twig extracts. Benzoic acid was the predominant compound, while coumarins, phenolic acids, biflavonoids, and triterpenoids were also detected. These findings enrich the phytochemical understanding of *A. cunninghamii* and provide a basis for exploring its pharmacological potential.

ACKNOWLEDGEMENTS

The authors would like to express their sincere gratitude to the Indonesian Ministry of Education, Culture, Research, and Technology for financial support through IPB University under Project No. 102/E5/PG.02.00.PL/2023, dated June 19, 2023. We also appreciate the LC–MS/MS facility support provided by the Advanced Laboratory. IPB University.

REFERENCES

- 1. Chen, J., Yang, M. L., Zeng, J. & Gao, K. Antimicrobial activity of *Araucaria cunninghamii* sweet and the chemical constituents of its twigs and leaves. *Phytochem. Lett.*, 2013; 6(1): 41–45.
- 2. Menezes, J. C. J. M. D. S. & Campos, V. R. Natural biflavonoids as potential therapeutic agents against microbial diseases. *Sci. Total Environ.*, 2021; 769: 1–21.
- 3. Kim, H. P., Park, H., Son, K. H. Chang, H. W. & Kang, S. S. Biochemical pharmacology of biflavonoids: Implications for anti-inflammatory action. *Arch. Pharm. Res.*, 2008; 31(3): 265–273.
- 4. Yu, S., Yan, H., Zhang, L., Shan, M., Chen, P., Ding, A. *et al.* A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. *Molecules*, 2017; 22(2): 1–23.
- 5. Yamaguchi, L. F., Vassão, D. G., Kato, M. J. & Di Mascio, P. Biflavonoids from Brazilian pine *Araucaria angustifolia* as potentials protective agents against DNA damage and lipoperoxidation. *Phytochemistry*, 2005; 66(18): 2238–2247.
- 6. Patial, P. K. & Cannoo, D. S. Phytochemical profile, antioxidant potential and DFT study of *Araucaria columnaris* (G. Forst.) Hook. Branch extracts study of *Araucaria columnaris* (G. Forst.) Hook. *Nat. Prod. Res.*, 2019; 35(22): 4611–4615.
- 7. Kurniawanti, Agusta, D. D., Sugita, P., Suparto, I. H. & Dianhar, H. Bioactive compounds of flavone dimers from Indonesian *Araucaria columnaris* leaves. *Rasayan J. Chem.*, 2023; 16(3): 1872–1882.
- 8. Mercader, A. G. & Pomilio, A. B. QSAR study of flavonoids and biflavonoids as influenza H1N1 virus neuraminidase inhibitors. *Eur. J. Med. Chem.*, 2010; 45(5): 1724–1730.
- 9. Li, M., Li, B., Xia, Z. M., Tian, Y., Zhang, D., Rui, W. J. *et al.* Anticancer effects of five biflavonoids from *Ginkgo biloba* L. male flowers in vitro. *Molecules*, 2019; 24(8): 1–13.
- 10. Wang, L., Song, J., Liu, A., Xiao, B., Li, S., Wen, Z. *et al.* Research progress of the antiviral bioactivities of natural flavonoids. *Nat. Products Bioprospect.*, 2020; 10(5): 271–283.
- 11. de Freitas, C. S., Rocha, M. E. N., Sacramento, C. Q., Marttorelli, A., Ferreira, A. C., Rocha, N. *et al.* Agathisflavone, a biflavonoid from *Anacardium occidentale* L., Inhibits influenza virus Neuraminidase. *Curr. Top. Med. Chem.*, 2019; 20(2): 111–120.
- 12. Guevara, J. H. T., Guzmán, O. J. L., Londoño-Londoño, J. A., Sierra, J. A., León-Varela, Y. M., álvarez-Quintero, R. M. *et al.* Natural biflavonoids modulate macrophage-oxidized LDL interaction in vitro and promote atheroprotection in vivo. *Front. Immunol.*, 2017; 8(923): 1–17.
- 13. Ito, T., Yokota, R., Watarai, T., Mori, K., Oyama, M., Nagasawa, H., *et al.* Isolation of six isoprenylated biflavonoids from the leaves of *Garcinia subelliptica*. *Chem. Pharm. Bull.*, 2013; 61(5): 551–558.
- 14. Branco, C. S., Rodrigues, T. S., Lima, E. D., Calloni, C., Scola, G. & Salvador, M. Chemical constituents and biological activities of *Araucaria angustifolia* (Bertol.) O. Kuntze: A Review. *J. Org. Inorg. Chem.*, 2016; 2(1): 1–9.
- 15. Hwang, C. H., Lin, Y. L., Liu, Y. K., Chen, C. H., Wu, H. Y., Chang, C. C., et al. 7,7"-dimethoxyagastisflavone-induced apoptotic or autophagic cell death in different cancer cells. *Phyther. Res.*, 2012; 26(4): 528–534.

- 16. Lee, S., Kim, H., Kang, J. W., Kim, J. H., Lee, D. H., Kim, M. S. *et al.* The Biflavonoid amentoflavone induces apoptosis via supressing E7 expression, cell cycle arrest at sub-G1 phase, and mitochondria-emanated intrinsic pathways in human cervical cancer cells. *J. Med Food*, 2011; 14(7): 808–816.
- 17. Wang, Z. X., Cheng, M. C., Zhang, X. Z., Hong, Z. L., Gao, M. Z., Kan, X. X. et al. Cytotoxic biflavones from *Stellera chamaejasme*. Fitoterapia, 2014; 99(1): 334–340.
- 18. Sugita, P., Agusta, D. D., Dianhar, H., Suparto, I. H., Kurniawanti, K., Rahayu, D. U. C. *et al.* The cytotoxicity and SAR analysis of biflavonoids isolated from *Araucaria hunsteinii* K. Schum. leaves against MCF-7 and HeLa cancer cells. *J. Appl. Pharm. Sci.*, 2023; 13(10): 199–209.
- 19. Irfana, L., Agusta, D. D., Arifin, B., Wahyudi, S. T., Achmadi, S. S. & Sugita, P. Biflavonoid from Indonesian *Araucaria cunninghamii* Mudie leaves activity againts breast cancer and 20s proteosome. *Trends Sci.*, 2025; 22(3): 1–13.
- 20. Matsabisa, M. G., Chukwuma, C. I., Ibeji, C. U. & Chaudhary, S. K. Stem bark exudate (resin) of *Araucaria cunninghamii* Aiton ex D. Don (hoop pine) abates glycation, α-glucosidase and DPP-IV activity and modulates glucose utilization in Chang liver cells and 3T3-L1 adipocytes. *South African J. Bot.*, 2019; 121: 193–199.
- 21. Ayepola, O. R., Cerf, M. E., Brooks, N. L. & Oguntibeju, O. O. Kolaviron, a biflavonoid complex of *Garcinia kola* seeds modulates apoptosis by suppressing oxidative stress and inflammation in diabetes-induced nephrotoxic rats. *Phytomedicine*, 2014; 21(14): 1785–1793.
- 22. Liu, P. K., Weng, Z. M., Ge, G. B., Li, H. L., Ding, L. Le., Dai, Z. *et al.* Biflavones from *Ginkgo biloba* as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. *Int. J. Biol. Macromol.*, 2018; 118: 2216–2223.
- 23. Sugita, P., Handayani, S. D. P., Agusta, D. D., Ambarsari, L., Dianhar, H. & Rahayu, D. U. C. Combined in-silico and in-vitro approaches to evaluate the inhibitory the potential of biflavonoids from Araucaria plants againts α-glucosidase as target protein. *Rasayan J. Chem.*, 2023; 16(1): 361–375.
- 24. El-Nashar, H. A. S., Mostafa, N. M., Eldahshan, O. A. & Singab, A. N. B. A new antidiabetic and anti-inflammatory biflavonoid from *Schinus polygama* (Cav.) Cabrera leaves. *Nat. Prod. Res.*, 2022; 36(5): 1182–1190.
- 25. Talaat, A. N., Ebada, S. S., Labib, R. M., Esmat, A., Youssef, F. S. & Singab, A. N. B. Verification of the anti-inflammatory activity of the polyphenolic-rich fraction of *Araucaria bidwillii* Hook. using phytohaemagglutinin-stimulated human peripheral blood mononuclear cells and virtual screening. *J. Ethnopharmacol.*, 2018; 226: 44–47.
- 26. Ye, Y., Guo, Y. & Luo, Y. T. Anti-inflammatory and analgesic activities of a novel biflavonoid from shells of *Camellia oleifera. Int. J. Mol. Sci.*, 2012; 13(10): 12401–12411.
- 27. Jnawali, H. N., Park, Y. G., Jeon, D., Lee, E. & Kim, Y. Anti-inflammatory activities of biapigenin mediated by actions on p38 MAPK pathway. *Bull. Korean Chem. Soc.*, 2015; 36(9): 2325–2329.
- Agusta, D. D., Dianhar, H., Rahayu, D. U. C., Suparto, I. H. & Sugita, P. Anticancer and antivirus activities of two biflavonoids from Indonesian *Araucaria hunsteinii* K Schum leaves. *J. Hunan Univ. Nat. Sci.*, 2022; 49(3): 168– 177.
- Sahu, B., Bhardwaj, N., Chatterjee, E., Dey, B., Tripathi, N., Goel, B., Kushwaha, M., Kumar, B., Singh, B., Guru, S. K. et al. LCMS-DNP based dereplication of Araucaria cunninghamii Mudie gum-resin: identification of new cytotoxic labdane diterpene. Nat. Prod. Res., 2022; 36(24): 6207–6214.
- 30. Liu, Y., Li, X., Cai, K., Cai, L., Lu, N. & Shi, J. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms. *Appl. Soil Ecol.*, 2015; 93: 78–

87.

- 31. Sugita, P., Ningtias, W. S. A., Priandanda, R. C. & Ilmiawati, A. Isolation and structural characterization of biflavonoids from *Araucaria hunsteinii* and *Araucaria columnaris*: Chemotaxonomic and pharmacological perspectives. *Valensi*; forthcoming 2025.
- 32. Akwu, N. A., Lekhooa, M., Deqiang, D. & Aremu, A. O. Antidepressant effects of coumarins and their derivatives: A critical analysis of research advances. *Eur. J. Pharmacol.*, 2023; 956: 1–18.
- 33. Nie, K., Liu, L., Peng, L., Zhang, M., Zhang, C., Xiao, B., Xia, Z. & Huang, W. Effects of meranzin hydrate on the LncRNA-miRNA-mRNA regulatory network in the Hippocampus of a rat model of depression. *J. Mol. Neurosci.*, 2022; 72(4): 910–922.
- 34. Youssef, A. M. M., Maaty, D. A. M. & Al-Saraireh, Y. M. Phytochemical analysis and profiling of antitumor compounds of leaves and stems of *Calystegia silvatica* (Kit.) Griseb. *Molecules*, 2023; 28(2): 1–22.