

World Journal of Pharmaceutical

Science and Research www.wjpsronline.com

Review Article

ISSN: 2583-6579 SJIF Impact Factor: 5.111

> **Year - 2025** Volume: 4; Issue: 5 Page: 970-980

THE ROLE OF COSMATIC CHEMISTRY IN MODERN SKINCARE

Vaishali Bhutambare¹, Ajay Bhagwat¹, Rohit Garje^{2*}, Rutika Hande², Komal Musale², Suraj Chavan²

> ¹Assistant Professor, Samarth College of Pharmacy, Belhe, Pune, India 412410. ²Student, Samarth College of Pharmacy, Belhe, Pune, India 412410.

Article Received: 24 September 2025 | Article Revised: 14 October 2025 | Article Accepted: 05 November 2025

*Corresponding Author: Rohit Garje

Student, Samarth College of Pharmacy, Belhe, Pune, India 412410.

DOI: https://doi.org/10.5281/zenodo.17617571

How to cite this Article: Vaishali Bhutambare, Ajay Bhagwat, Rohit Garje, Rutika Hande, Komal Musale, Suraj Chavan (2025). THE ROLE OF COSMATIC CHEMISTRY IN MODERN SKINCARE. World Journal of Pharmaceutical Science and Research, 4(5), 970-980. https://doi.org/10.5281/zenodo.17617571

Copyright © 2025 Rohit Garje | World Journal of Pharmaceutical Science and Research.

This work is licensed under creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0).

ABSTRACT

Cosmetics have been used for a variety of reasons throughout history, from health protection to aesthetic enhancement. These days, the skincare sector uses bioactive natural components and state-of-the-art chemical technologies to create safer, more effective, and environmentally friendly This essay examines the crucial role that cosmetic chemistry has played in the products. Important topics include the usage of vitamins, peptides, antioxidants, and natural extracts are investigated for their potential to fight microbial infections, inflammation, pigmentation, and skin ageing. Product creation and customised skincare solutions are being revolutionised by the combination of digital technologies and artificial intelligence. The physiological importance of skin, its exposure to environmental stressors like pollution and UV rays, and cutting-edge defences like moisturisers, sunscreens, and serums are also covered in the article. This thorough analysis emphasises how science and customs can work together to improve skin health and appearance in the present day.

KEYWORDS: Modern skincare, Cosmeceuticals, Photoprotection, Biosurfactants, Antioxidants, Peptides, Hydroxy acids (AHA), Niacinamide (vitamin B3).

INTRODUCTION

Throughout human history, Beauty and cosmetic items have served a wide range of significant purposes. Coloured cosmetics have been used to embellish the deceased prior to burial, to increase the thrill around courtship, and to prepare for entry into combat. Everything from religious rituals to public health has been impacted by skin care products. To comprehend these products' current use and the numerous changes in formulation, it is crucial to take a quick glance at their history. A few cosmetics and skin care items with the most fascinating histories are covered

in this article. [1] Enhancing one's physical appearance has been evaluated using cultural and aesthetic reference models from a particular historical and cultural setting. Because of this, both men and women have long used medical plants, minerals, animal derivatives, and other items to treat and enhance the appearance of their faces and bodies. The term "officinal herbs" refers to the use of plants and plant wastes in laboratories to create natural remedies. Their formulations have long been used to make oils, ointments, perfumes, herbal teas, infusions, and tinctures, as well as to maintain health, wellness, and beauty. Today, they are used as bioactive ingredients in the health products industry. [2] Cosmetics, whether they be a bold lipstick, a basic moisturiser, or a cutting-edge anti-aging skincare product, increase self-esteem and confidence. All of this implies that one of the key characteristics of modern beings is beauty. Modern chemical technology and scientific advancements have helped create cosmetic skincare products that are safer, more effective, and more sustainable. The cosmetic skincare sector of today is fuelled by innovation, and its products are always changing. It refers to the area of the personal care and beauty industry that is concentrated on creating, manufacturing, and promoting skincare products that are intended to enhance the look and health of the skin. Digital tools have recently made their way into the skincare, cosmetics, and beauty care industries. They affect the services provided to the customer and are frequently referred to as artificial intelligence (AI), including machine learning (ML). [3] Up until recently, people employed natural resources empirically for skin care and physical appearance modification, based on traditional applications and ethnobotanical expertise. But with the increased popularity of health and skin care products in recent years, there is now a high demand for some potent plant extracts. Our skin serves as a barrier between our body and the outside world, and because of its closely spaced nerves, it is a sensory organ that represents our emotions, feelings, and overall health. The accumulation of molecular damage brought on by reactive oxygen species (ROS)—such as ions, free radicals, and peroxides—is what is known as ageing. As a result, skin ageing has significant social significance, in contrast to internal organs that do not age outwardly. As a result, the worry around cutaneous ageing differs greatly from that resulting from the overall ageing of the body. [4] Similarly, effectively removing PM from the skin by utilising washing products and applying barrier cream may shield the skin from PM's negative effects, however their effects have not yet been investigated. Anti-pollution care is becoming more popular as the cosmetics industry grows, but no study has assessed the effectiveness of skin care products in an actual environment. The purpose of this study was to find efficient methods of protecting volunteers' skin from PM by using cleansing products, barrier moisturiser cream, and antioxidants in those without visible skin conditions such atopic dermatitis, any allergic disorders, acne, rosacea, etc. [5] The biggest organ in the human body, the skin is a complicated structure. Its main purpose is to act as a barrier, keeping the body from losing too much fluids, and to keep harmful substances and infections out of the body. The epidermis, dermis, and hypodermis are the three layers that make up the human skin according to histology. Every one of these layers plays a vital role in how the skin functions. Numerous bacteria, both commensal and mutualistic, can colonise skin surfaces due to the intricate web of interactions between epidermal cells and skin germs. These several kinds of microorganisms thrive preferentially in the wet, dry, and sebaceous niches of the skin surface. Biosurfactants are biologically derived surface-active substances that are primarily secondary metabolites of bacteria, yeast, or filamentous fungi. Biosurfactants are also known as naturally derived surfactants since they are produced from these microorganisms using separation techniques such extraction, precipitation, and distillation without the addition of any organic synthesis prior to, during, or following manufacture. In general, biosurfactants are either neutral or anionic. Those with amine groups, on the other hand, are cationic. [6]

1. Skin Damage Caused by UV

In their distinct yet varied functions, a large number of items are now accessible to consumers. Some products contain surfactants that aid with a variety of skin conditions, including hyperpigmentation, ageing skin, and acne-prone skin. [7] Reactive oxygen species (ROS) generation is strongly enhanced by ultraviolet (UV) light, which is also a mutagenic, carcinogenic, and physically inflammatory factor. Early reactions, such as erythema or sunburn, or long-term reactions, such as modifications linked to skin damage at the molecular and biochemical level, can cause the biological effects of UV radiation on the skin. Inflammation is the skin's initial reaction to ultraviolet light. When keratinocytes are exposed to UVB irradiation, the epidermis produces more pro-inflammatory cytokines, such as tumour necrosis factor α (TNF-α) and interleukins IL-1, IL-6, IL-8, and IL-10, which in turn affect immune cell function. Cyclooxygenase-2 (COX-2) is another significant modulator of inflammation brought on by UV exposure. The enzyme COX-2 is in charge of converting arachidic acid into prostaglandins (PG), which are crucial for controlling the inflammatory response of skin exposed to UVB rays. [8]

(1). Skin ageing, and photoprotection

For many years, researchers have been examining how sunshine affects the skin. Twelve. The UV range (300–400 nm) is the most aggressive and well-studied, even though oxidative stress and pigmentation processes can be caused by a fraction of visible radiation, particularly blue light. [9]

(2). Pigmentation

40–45% of the electromagnetic radiation from the sun that reaches the skin is visible light, which causes reactive oxygen species to develop and accelerates photoaging. Fitzpatrick skin types IV–VI experience pigment darkening more quickly from visible light than from UVA radiation, which may explain why treating melasma and post-inflammatory hyperpigmentation in this group can be difficult. [10]

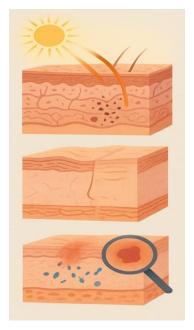


Fig: Skin Damage.

(3). Inflammation/healing

Transient local inflammation is a part of the intricate, multi-stage healing process, which is necessary to attract neutrophil and monocyte immune cells. For this reason, these cells generate ROS locally and get rid of bacteria, dead cells, and other waste. A return to homeostasis is crucial during tissue regeneration, and Nrf2 would step in at this stage to lessen local inflammation and the corresponding ROS level.^[11]

2. Skin's physiological characteristics, imaging analysis, and effectiveness-based skin care

The targeted treatment of skin with a particular issue following inspection by noninvasive skin examination and skin imaging analysis is known as efficacy-based skincare. For example, skincare products containing natural moisturising ingredients are recommended for dry skin with poor stratum corneum hydration (SCH) and significant transepidermal water loss (TEWL). Humans have progressively created tools to observe skin structure and operate in a noninvasive way in recent years thanks to advancements in electrical, optical, and audio engineering as well as informatics. ^[12] Bioactive Substances: Potential for Derma cosmetic Use In order to maintain their physical and metabolic integrity, plants create a range of natural antioxidants in response to environmental stressors including UV radiation and high temperatures. Antioxidants are commonly included in anti-aging formulations because they shield the skin from oxidative stress, which is a major factor in both the intrinsic and extrinsic processes of skin ageing. Furthermore, UV-induced damage to the epidermal barrier results in an inflammatory response that produces oxidant species, proteolytic enzymes, and cytokines (such as IL-1α, IL-6, and TNF-α); for this reason, anti-inflammatory qualities improve photoprotection. Additionally, ROS are essential for the regulation of matrix metalloproteinases (MMPs), like collagenase or elastase, which break down the basic extracellular matrix proteins—collagen and elastin—that give the skin its strength, suppleness, and firmness.^[13]

3. Skin Diseases

According to a mouse study, CERSyn3 was necessary for survival. 21 TEWL caused the death of CERSyn3-deficient mice soon after birth. Newborn mice's cultured skin was also more vulnerable to Candida albican colonisation, highlighting the significance of the skin barrier's ability to defend against external insults. When CER composition in CERSyn3-deficient mice was analysed, long-chain CERs with acyl moieties longer than 26 carbons were completely absent.^[14]

3.1 Mechanism Action

Topical products known as "cosmeceuticals" fill the gap between medications and cosmetics by providing therapeutic advantages via active chemicals that interact with the biology of the skin. They address different skin issues like inflammation, pigmentation, and ageing through a variety of modes of action.^[15]

3.1.1 Hydroxy MOA

The role of hydroxy acids (AHAs) in skin care and medicine delivery is related to niosomes as targeted drug delivery systems. Glycollic and lactic acids are examples of hydroxy acids that mainly function by exfoliating the stratum corneum, encouraging cell turnover, and improving the texture of the skin. By boosting the synthesis of collagen and glycosaminoglycan, they promote dermal remodelling, which increases skin suppleness and minimises wrinkles. Bioactive substances like hydroxy acids can be encapsulated by niosomes, which are vesicular carriers that enhance their stability and skin penetration. By releasing hydroxy acids in a controlled and targeted manner, this increases their efficacy and may lessen discomfort while enhancing therapeutic results.^[19]

3.1.2 Peptides MOA

In order to preserve the firmness and elasticity of the skin, peptides function as signalling molecules in the skin, promoting the creation of collagen and elastin. By encouraging fibroblast growth, they aid in skin regeneration and wound healing. Expression lines and wrinkles can be lessened by using specific peptides that imitate neurotransmitters to prevent muscle contractions. When added to topical formulations like sunscreen creams, these combined effects assist to improve the structural integrity of the skin and lessen obvious indications of ageing. Peptides are therefore useful bioactive ingredients in cosmeceutical treatments because they promote collagen synthesis, increase skin firmness, and relax face muscles, all of which aid in anti-aging and skin regeneration. [20]

3.1.3 Antioxidant

According to the article from the cited source, the antioxidant mechanism of action entails neutralising free radicals and reactive oxygen species (ROS) that induce oxidative stress in skin cells. In order to stabilise these reactive chemicals and stop cellular harm, such as DNA damage, lipid peroxidation, and protein oxidation, antioxidants provide electrons to them. Green tea polyphenols, grape seed extracts, and chemicals from ginger and turmeric are examples of plant-derived antioxidants that specifically prevent oxidative stress by scavenging reactive oxygen species (ROS) and strengthening the skin's natural antioxidant defences. In addition to lowering inflammation and preventing skin ageing, this also shields tissues from environmental harm brought on by pollution, UV rays, and other oxidative stressors. [19]

3.1.4 Vitamin B3 (Niacinamide)

niacinamide (Vitamin B3) has several positive effects on the skin, including: By encouraging keratinocyte development and ceramide formation, niacinamide improves the function of the skin barrier. This improves skin hydration by fortifying the lipid barrier and lowering transepidermal water loss. Because of its anti-inflammatory qualities, it helps soothe sensitive and inflamed skin. By preventing melanosomes—organelles that hold pigment—from moving from melanocytes to keratinocytes, niacinamide improves skin tone and lessens hyperpigmentation. It also controls the production of sebum, which helps to control acne. Overall, niacinamide is a multipurpose substance that is frequently utilised in medicinal and cosmetic applications because it strengthens the skin barrier, lowers inflammation, and modifies pigmentation processes.^[21]

4. Natural extractive

Since ancient times, natural extracts—whether derived from plants, minerals, or animals—such as enzymes, proteins, peptides, vitamins, and so forth—have been utilised as active components in cosmetic products. Hundreds of chemical structures with demonstrated activity may be present in the plant extract, which is an active ingredient in cosmetics. Without the use of synthetic processes, these botanical cosmetic compounds can be extracted from the herbs and purified. These organic extracts can be used in a variety of ways. [16]

4.1 Antioxidant

Natural antioxidants that can lessen oxidative stress on the skin or shield items from oxidative degradation are employed in the cosmetics sector. They come in a variety of forms and extracts from a broad variety of plants, grains, and fruits. Reactive oxygen species (ROS) are a primary contributor to oxidative stress, which speeds up the ageing process of the skin. While extrinsic ageing is linked to outside variables that impact the ageing process (such as air pollution, UV radiation, and pathogenic microbes), intrinsic ageing is linked to the natural ageing process. The main source of ROS generation is probably photoaging. [13,16]

4.2 Vitamin A

The Food and Drug Administration originally approved vitamin A as an anti-wrinkle drug that has antiaging qualities and enhances the surface appearance of the skin. The retinoid family includes vitamin A, a fat-soluble chemical. In addition to retinol, that category consists of structurally similar compounds that share biological characteristics with retinol. For standardisation, it is provided in retinol equivalents because the biological activity of the compounds differ.^[13]

4.3 Anti ageing

Antioxidants aid in lowering oxidative damage and chronic inflammation associated with ageing. Natural extracts and both conventional and contemporary methods are used in antiaging skin care to tackle the symptoms and indicators of ageing. [16]

4.4 Antimicrobial

Numerous bacterial skin infections are treated and prevented using antibiotics. These illnesses include atopic dermatitis (AD), eczema, impetigo, and acne vulgaris. However, because of their abuse, many of the bacteria that cause these diseases have become resistant to traditional antibiotics, necessitating the development of new and more potent antimicrobial medicines.^[17]

4.5 Anti Inflammatory

This collection of herbs offers the anti-inflammatory effect that is necessary for all anti-aging formulas by shielding the skin from allergens, inflammatory agents, chemicals, and even stress. Inflammation or breakouts can be caused by a variety of external environmental sources. One of the main causes of ageing is thought to be inflammation; an infected location creates a micro-scar that eventually turns into a wrinkle or blemish. Leukotrienes, prostaglandins, cytokines, and growth factors are examples of inflammatory mediators that affect the texture, integrity, and tone of the skin. Thus, preventing inflammation at its source is a successful anti-aging tactic. Additionally, facial skin is constantly exposed, even when the rest of the skin can be covered with clothing. Aloe vera, rose petals, and silk cotton trees are examples of Sothara botanicals that have suitable anti-inflammatory qualities.^[18]

5. Skincare Products

products for care the amount of products available for cleansing, calming, restoring, reinforcing, and protecting the skin is nearly infinite, and the knowledge on skin care techniques is abundant but not well scientifically documented. However, their functions can be characterised as: removing dirt, sebum, microorganisms, exfoliated corneocytes, and other unwanted substances from the skin; reducing unpleasant skin symptoms (such as pruritus, burning, and odour); restoring (subclinically) damaged skin (such as dry and inflamed skin); strengthening vulnerable but undamaged skin (such as skin surface pH balance, germ reduction); protecting vulnerable, damaged, and undamaged skin from various noxes; and providing a pleasant skin feel (well-being). [25]

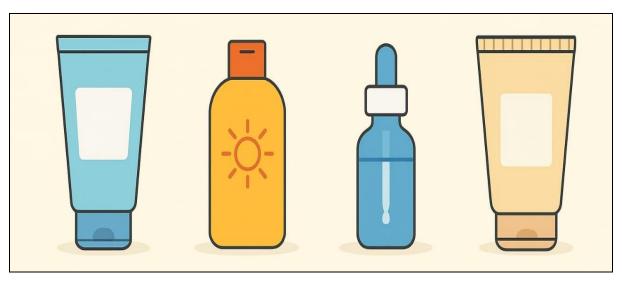


Fig-2: Skincare Products (Moisturizer, Sunscreen, Serum, Body Lotion.).

5.1 Moisturizer

Many people use moisturisers for both dry and regular skin. Applying these preparations can raise the stratum corneum's water content, which will have its most important effect—moisturizing—aside from keeping the skin's pH normal. It will also make it easier for the skin's lipid bilayers to return to normal and regain their ability to hold corneocytes together and retain moisture in the intercellular spaces. The dry skin cycle is then broken by the hydration, leaving the skin's surface smooth, soft, malleable, and more extensible. Furthermore, moisturisers may also have anti-inflammatory properties via inhibiting cyclooxygenase activity, antimitotic properties, antipruritic properties by cytokine downregulation, photoprotective properties, antibacterial properties, and wound healing properties. [22]

MOA

In the stratum corneum (SC), moisturising agents mainly work by preserving the ideal ratio of water to skin lipids. Three primary methods exist: Humectants: Glycerol, sorbitol, and sodium hyaluronate are examples of substances that improve hydration in the SC by drawing and holding onto water molecules from the surrounding environment or deeper layers of the skin. Emollients and Occlusives: By decreasing evaporation, lipophilic substances like petrolatum, paraffin oil, fatty alcohols, and different waxes form a practically impermeable layer on the SC surface, inhibiting transepidermal water loss (TEWL). Lipids: Ceramides and other lipids that resemble the SC's natural lipids serve to strengthen and repair the skin barrier, which lowers water loss. [23]

5.2 Sunscreen

The part of electromagnetic energy that falls between visible light and X-rays, or between 200 and 400 nm, is known as ultraviolet (UV) radiation. There are three types of this UV radiation based on wavelength, are given as UV -A Radiation, UV-B Radiation and UV-C Radiation. [24]

MOA

It is now recognised that skin photoaging and photocarcinogenesis are caused by a photooxidative mechanism that relies on light-driven reactive oxygen species (ROS) formation. 12 Photo-oxidative damage caused by UVA photons efficiently penetrates the human dermis and dermal capillary system through the epidermis' outermost layers. The stratum corneum, epidermis, and dermis of human skin experience a considerable loss of enzymatic and non-enzymatic

antioxidants in addition to substantial protein and lipid oxidation. Photo-oxidation of pre-existing melanin and their precursors causes the immediate and persistent pigment darkening (IPD and PPD) responses of human skin. Additionally, following sun irradiation, there is an up-regulation of ferritin, glutathione peroxidase, hemeoxygenase-1 (HO-1), Cu–Zn-dependent superoxide dismutase (SOD1), manganese-dependent SOD2, and catalase. [24]

5.3 Serum

Since the beginning of time, people have understood the value of beauty in the development of civilisation and the desire to appear attractive and healthy. The Greek term "cosmetic" means "to adorn," meaning to add something ornamental to a person or something. The study and practice of beauty therapy is known as cosmetology. It is the study of cosmetics and how they are applied, as well as the art or science of enhancing and beautifying the skin, hair, and nails. For a skin care product to achieve its intended goal, the potent ingredient must be able to penetrate the skin. In order to provide immediate benefits without using dangerous chemicals, face serum is the solution for delivering the valuable active ingredient into the skin.^[26]

5.4 Body Lotion

Lotions are characterised as a monophasic or biphasic suspension, emulsion, or solution that can be applied frictionlessly to both intact and broken or irritated skin. Cosmetics lessen sebum, acne, and wrinkles. Skin protection, sunscreen, anti-acne, anti-wrinkle, and anti-aging are among the many formulations that address skin concerns. These combinations are made with various substances. The current study gathers information on the use of herbs in the production of herbal lotions. It talks about the advantages and applications of these lotions in the creation of cosmetics. Herbs and plants are used in the ancient Indian medical system known as Ayurveda to treat a variety of illnesses. The primary objective of a lotion is to soothe the skin while shielding it from the elements. According to the Drugs and Cosmetics Act, cosmetics are substances that are applied to the body by rubbing, pouring, sprinkling, or spraying in order to wash, beautify, boost attractiveness, or alter appearance. [27]

6. Importance of Cosmetic Chemistry in Skincare

The science of cosmetics composition is central to the composition and advancement of dermal layer care items that are both safe and effective. As consumer expectations for dermal layer health and aesthetics continue to rise, the role of cosmetic chemical science has become increasingly vital. It provides the scientific framework to understand how components interact with the dermal layer and with each other, ensuring optimal item performance. [28]

6.1 Development of Targeted Formulations

- The science of cosmetics composition allows for the precise combination of active and functional components to address specific dermal layer concerns like acne, dryness, hyperpigmentation, aging, and sensitivity.
- Examples include compositions with niacinamide for brightening, hyaluronic acid for hydration, and retinoids for anti-aging.
 [28]

6.2 Enhancing Product Efficacy

- Through controlled composition processes, cosmetic chemists ensure components are delivered effectively to the dermal layer.
- Techniques such as encapsulation, emulsification, and pH balancing improve the stability and bioavailability of active compounds.
 [29]

6.3 Ensuring Safety and Stability

- The science of cosmetics composition is essential for assessing the toxicity, irritancy, and allergenic potential of components.
- t also ensures item stability over time (e.g., preventing separation, microbial contamination, or degradation under light/heat exposure). [29]

6.4 Innovation and Technological Advancement

- Innovations like nano-based scientific advancement in science, liposome delivery, and bioengineered components have revolutionized contemporary dermal layer care by enhancing absorption and minimizing side effects.
- These technologies are made possible by a deep understanding of cosmetic chemical science. [29]

6.5 Regulatory Compliance

- Cosmetic chemists ensure compositions comply with national and international cosmetic regulations (e.g., FDA, EU Cosmetics Regulation).
- ❖ This includes ingredient protection assessments, proper labeling, and documentation of manufacturing processes. [30]

6.6 Supporting Sustainable and Green Formulations

- Growing consumer demand for eco-friendly and "clean beauty" items has pushed cosmetic chemical science to adopt green chemical science principles.
- This includes using biodegradable components, reducing synthetic additives, and developing sustainable packaging.

6.7 Personalization and Customization

- Advances in cosmetic chemical science allow for the creation of personalized dermal layer care items based on individual dermal layer types, conditions, or genetic profiles.
- Customized compositions improve user satisfaction and item effectiveness. [31,32,33,34,35,36]

CONCLUSION

By connecting centuries of traditional knowledge with recent scientific advancements, cosmetic chemistry has emerged as a crucial component of modern skincare. Key skin issues like ageing, pigmentation, inflammation, and microbial infections are addressed by bioactive natural extracts, peptides, antioxidants, and vitamins, among other safer, more effective, and environmentally friendly ingredients that have been incorporated into skincare formulations over time. The application of technological advancements like artificial intelligence, which improve customised skincare techniques, accelerates this growth. Environmental stressors like pollution and UV rays constantly test the skin's intricate physiology as a protective organ, making sophisticated skincare solutions necessary to preserve skin resilience and health while also enhancing aesthetic appeal. These days, modern skincare includes a wide range of products that serve cleansing, protecting, restorative, and therapeutic purposes, including moisturisers, sunscreens, serums, and lotions. All things considered, cosmetic chemistry is a vibrant fusion of tradition, science, and technology, and it is essential to advancing skin health and attractiveness in the modern world.

REFERENCES

- 1. Draelos, Z. D., Cosmetics and skin care products: A historical perspective. Dermatologic Clinics, 2000; 18(4): 557–563.
- 2. Pisanti S, Mencherini T, Esposito T, D'Amato V, Re T, Bifulco M, Aquino RP. The medieval skincare routine according to the formulations of Madgistra Trotula and the Medical School of Salerno and its reflection on cosmetology of the third millennium. J Cosmet Dermatol, 2022; 21(12): 1–13.
- 3. Georgievskaya, A., Tlyachev, T., Danko, D., Chekanov, K., & Corstjens, H., How artificial intelligence adopts human biases: The case of cosmetic skincare industry. AI and Ethics, 2025; 5(1): 105–115.
- 4. González-Minero, F. J., & Bravo-Díaz, L., The Use of Plants in Skin-Care Products, Cosmetics and Fragrances Past and Present. Cosmetics, 2018; 5(3): 50.
- 5. Lee J, Oh SJ, Park S, Park J-H, Lee JH. Anti-pollution skincare: Research on effective ways to protect skin from particulate matter. Dermatologic Therapy, 2021; e14960.
- 6. Adu SA, Naughton PJ, Marchant R, Banat IM. Microbial Biosurfactants in Cosmetic and Personal Skincare Pharmaceutical Formulations. Pharmaceutics, 2020; 12(11): 1099.
- Cook SL. In the Garden of Skincare: Exploring the Benefits and Regulations of Botanical Ingredients. Honors Theses, Eastern Kentucky University, 2024.
- 8. Kukula-Koch, W., Gaweł-Bęben, K., Czop, M., Antosiewicz, B., Strzepek-Gomółka, M., Hoian, U., & Wielgomas, B., Botanical Ingredients for Topical Skin Regeneration, Wound Healing, and Sun Protection—A Review of Cosmeceutical Applications and Molecular Mechanisms. International Journal of Molecular Sciences, 2023; 24(15444).
- 9. Jesumani V, Du H, Aslam M, Pei P, Huang N. Potential Use of Seaweed Bioactive Compounds in Skincare: A Review. Marine Drugs, 2019; 17(12): 688.
- 10. Draelos ZD. Revisiting the Skin Health and Beauty Pyramid: A Clinically Based Guide to Selecting Topical Skincare Products. Journal of Drugs in Dermatology, 2021; 20(6): 695-699. doi:10.36849/JDD.5883
- 11. Frantz M-C, Rozot R, Marrot L. NRF2 in dermo-cosmetic: From scientific knowledge to skin care products. BioFactors, 2022.
- 12. Jiang B, Jia Y, He C. Promoting new concepts of skincare via skinomics and systems biology: From traditional skincare and efficacy-based skincare to precision skincare. J Cosmet Dermatol, 2018; 19: 19-29.
- 13. Rodrigues, R., Oliveira, M. B. P. P., & Alves, R. C., Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics, 2023; 10(12).
- 14. Meckfessel, M. H., & Brandt, S., The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products. Journal of the American Academy of Dermatology, 2014; 71(1): 177-184.
- 15. Shukla, A., Pandey, H., Shukla, A., Singh, S., & Verma, R., A Comprehensive Overview of Cosmeceuticals Used as Skincare Product. Journal of Drug Discovery and Health Sciences, 2025; 2(2): 133-142.
- 16. Saraf, S., Herbal cosmetics: Trends in skin care formulation. Phoog Rev., 2009; 3(5): 82-89.
- 17. Adu, S. A., Naughton, P. J., Marchant, R., & Banat, I. M., Microbial Biosurfactants in Cosmetic and Personal Skincare Pharmaceutical Formulations. Pharmaceutics, 2020; 12(1099).
- 18. Datta, H. S., & Paramesh, R., Trends in aging and skin care: Ayurvedic concepts. Journal of Ayurveda and Integrative Medicine, 2010; 1(2): 110-118.

- 19. Kazi, K. M., Mandal, A. S., Biswas, N., Guha, A., Chatterjee, S., Behera, M., & Kuotsu, K., Niosome: A future of targeted drug delivery systems. Journal of Advanced Pharmaceutical Technology & Research, 2010; 1(4): 374–380.
- Gollavilli, H., Hegde, A. R., Managuli, R. S., Bhaskar, K. V., Dengale, S. J., Reddy, M. S., Kalthur, G., & Mutalik, S., Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation. Colloids and Surfaces B: Biointerfaces, 2020; 193: 111122.
- 21. Chen, S., Hanning, S., Falconer, J., Locke, M., & Wen, J., Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. European Journal of Pharmaceutics and Biopharmaceutics, 2019; 144: 18–39.
- 22. Mawazi, S. M., Ann, J., Othman, N., Khan, J., Alolayan, S. O., Al Thagfan, S. S., & Kaleemullah, M., A Review of Moisturizers; History, Preparation, Characterization and Applications. Cosmetics, 2022.
- 23. Pavlou, P., Siamidi, A., Varvaresou, A., & Vlachou, M., Skin Care Formulations and Lipid Carriers as Skin Moisturizing Agents. Cosmetics, 2021; 8(3): 89.
- 24. Donglikar, M. M., & Deore, S. L., Sunscreens: A review. Pharmacognosy Journal, 2016; 8(3): 171-179.
- 25. Surber, C., & Kottner, J., Skin care products: What do they promise, what do they deliver. Journal of Tissue Viability, 2017; 26(1): 29-36.
- 26. Shejul, T. S., & Kudale, K. (year). Facial Serum: Its Formulation, Usage, Special Ingredients, Various Types and Benefits, 2008; page no 680.
- 27. Kunde, V., Sonawane, S., Katkale, A., & Hagavane, S., Review on Lotion as a Skin Care Products. World Journal of Pharmacy and Pharmaceutical Sciences, 2022; 11(4): 503-519.
- 28. Nanocarriers in dermal layer care: a review of current trends and future perspectives. PubMed.
- Pandey, A. S., Bawiskar, D., & Wagh, V., Nanocosmetics and Skin Health: A Comprehensive Review of Nanomaterials in Cosmetic Formulations, 2024.
- 30. Nanocelluloses as dermal layer biocompatible materials for dermal layer care, cosmetics, and healthcare: compositions, regulations, and emerging applications. Carbohydrate Polymers, 278: 118956.
- 31. Use of Nanoscientific advancement in science in Cosmetics and Cosmeceuticals." IJRASET.
- 32. Badhe, N., Maniyar, S., Kadale, P., Kale, R., Bhagwat, A. and Doke, R.R., Advancements in nanotechnology for glaucoma detection and treatment: A focus on biosensors, IOP monitoring, and nano-drug delivery systems.
- 33. Gandhi, B., Bhagwat, A., Matkar, S., Kuchik, A., Wale, T., Kokane, O. and Rode, N., Formulation and Evaluation of Bilayer Tablets of Atenolol and Amlodipine for the Treatment of Hypertension. Research Journal of Pharmacy and Technology, 2025; 18(5): 2037-2042.
- 34. Bhagwat A, Lokhande A, Pingat M, Doke R, Ghule S. Strategies and Mechanisms for Enhancing Drug Bioavailability through Co-Amorphous Mixtures-A Comprehensive Review. Research Journal of Pharmacy and Technology, 2025; 18(1): 409-14.
- 35. Bhagwat A, Tambe P, Vare P, More S, Nagare S, Shinde A, Doke R. Advances in neurotransmitter detection and modulation: Implications for neurological disorders. IP Int J Comprehensive Adv Pharmacol, 2024; 9(4): 236-47.
- BHAGWAT, Ajay, et al. Development of Nanoparticles for the Novel Anticancer Therapeutic Agents for Acute Myeloid Leukemia. Int J Pharm Sci Nanotechnol, 2023; 16(4): 6894-906.