

World Journal of Pharmaceutical

Science and Research

www.wjpsronline.com

Review Article

ISSN: 2583-6579 SJIF Impact Factor: 5.111

> Volume: 4; Issue: 5 Page: 1006-1010

Year - 2025

A REVIEW ON PHYTOCONSTITUENTS AND PHARMACOLOGICAL **ACTIVITY OF NELUMBO NUCIFERA**

M. Suganya*, Prof. Dr. B. Sangmeswaran, A. Preethi, M. Preethi, S. Priyadharshini, R. Raaghul

Department of Pharmacognosy, SSM College of Pharmacy, Jambai.

Article Received: 30 September 2025 | Article Revised: 19 October 2025 | Article Accepted: 11 November 2025

*Corresponding Author: M. Suganya

Department of Pharmacognosy, SSM College of Pharmacy, Jambai.

DOI: https://doi.org/10.5281/zenodo.17617661

How to cite this Article: M. Suganya, Prof. Dr. B. Sangmeswaran, A. Preethi, M. Preethi, S. Priyadharshini, R. Raaghul (2025). A REVIEW ON PHYTOCONSTITUENTS AND PHARMACOLOGICAL ACTIVITY OF NELUMBO NUCIFERA. World Journal of Pharmaceutical Science and Research, 4(5), 1006-1010. https://doi.org/10.5281/zenodo.17617661

Copyright © 2025 M. Suganya | World Journal of Pharmaceutical Science and Research.

This work is licensed under creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0).

ABSTRACT

Nelumbo nucifera commonly known as the lotus plant, has been widely used in traditional medicine systems across Asia. Various parts of the plant, including it's seeds, leaves, flowers and rhizome, are rich in bioactive compounds like flavonoids, alkaloids and polyphenols. This review summarize the phytochemical composition and pharmacological effect of lotus extract, emphasizing their antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective and anti-cancer properties. The therapeutic potential of lotus plant extract in managing chronic diseases warrants further clinical validation.

KEYWORDS: Nelumbo nucifera, phytochemical composition, antioxidant activity, pharmacological effects.

INTRODUCTION

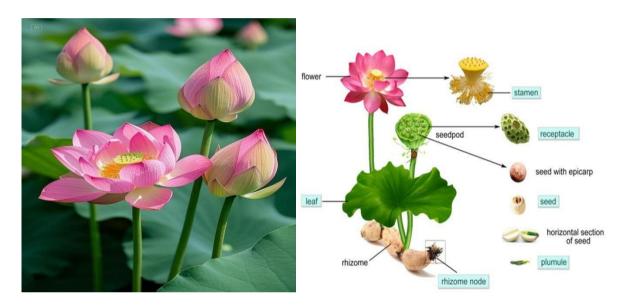
An aquatic perennial, Indian lotus is the national flower of India and Vietnam. The roots of the plant are firmly planted in the soil of the pond or river bottom. The leaves can be seen floating on the top of the water surface. Lotus grows to a height of about 150 cm, with a 3-meter horizontal spread. The leaves can be as large as 60 cm in diameter, while the showy flowers can be up to 20 cm in diameter. The fruits are a conical pod, with seeds contained in holes in the pod. The lotus flower can be seen in hues of pink and white. It is native to Greater India and commonly cultivated in water gardens.[1]

BOTANICAL DESCRIPTION

Botanical Name : Nelumbo nucifera Family Name : Nelumbonaceae

Kingdom : Plantae

Division : Magnoliophyta
Class : Magnoliopsida
Order : Proteales


Family : Nelumbonaceae

Genus : Nelumbo Species : N.nucifera

Popular Name : Sacred Water Lotus, Sacred Water Lilly, Pink Lotus, Nelumbo Lutea.

Parts used : Petals, seeds, leaves, roots

Habitat : Found in ponds and swamps^[2]

PHYTOCONSTITUENTS & PHARMACOLOGICAL ACTIVITY

1. LOTUS FLOWER

Sepals, petals and stamens are spirally arranged and gradually pass one into another.

Solitary, large 10-25cm in diameter, white pink or pinkish white fragrant peduncles arising from the nodes of the rhizomes sheathing at the base, 1-2cm long, green or blackish green, hard and stout smooth or rough due to the presence of numerous small scatterd prickles. [3,4,5,6]

Category	Major compounds	Pharmacological activity
Alkaloids	Nuciferine, Neferine, o-nornuciferine,	Responsible for sedative, Antiarrhythmic,
	liensinine Lsoliensinine	Antioxidant properties
Flavonoids	Quercetin, Kaempferol Isoquercitrin, Catechin	Potent antioxidant, Anti-inflammatory,
		Hepato protective
Phenolic acids	Gallic acid, Caffeic acid, P-coumaric acid	Contribute to radical scavenging,
		Cytoprotective activities
Tannis	Ellagitannis, Pronthocyanidins	Exhibit antimicrobial & antioxidant
Saponins	Various triterpenoid & saponins	Involved in immune modulation &
		cholesterol regulation
Polysaccharides	Lotus polysaccharide fractions (LPS1-LPS3)	Immunostimulant, Antitumor activities
Essential oil	Caryophyllene, Linalool, Methylanthranilate	Fragrance, Anti-inflammatory, Antimicrobial
		functions

2. LOTUS STEM

Lotus stem is a fleshy part of Nelumbo nucifera, pale green to white, long and cylindrical with nodes and internodes. It contains large air cavities [arenchyma], parenchyma rich in starch and scattered vascular bundles. It is spongy, crisp, slight sweet and yields mucilage. [7,8,9,10]

Category	Major compounds	Pharmacological activity
Alkaloids	Nelumbine, Nuciferine, Liensinine, Neferine.	Responsible for CNS & Cardiovascular
Alkaloids	Netumbine, Nucherine, Liensinine, Neterine.	effects.
Flavonoids	Quercetin, Kaempferol, Isoquercitrin, Catechin.	Strong Anti-oxidant, Anti- inflammatory.
Phenolic compounds	Gallic acid, Ferulic acid, protocatechuic acid.	Anti- aging, Protective effects.
Tannins	Condensed tannins.	Astringent, Anti- microbial.
Saponins	Triterpenoid saponins.	Anti- inflammatory, Immune modulating.

3. LOTUS LEAVES

The varieties of enormous leaves are aerial and floating, ranging in size from 20 to 90 cm. The leaves are leathery when they are fresh, but after drying, they become nearly membranous and brittle. The lower surface has some brownish red blotching, and the petioles of the aerial leaves are erect and stout white, while those of the floating leaves are not strong enough. The diameter is abruptly acute to form a short tip, and they are petiolate, entire glaucous, non – wettable, strong nerved. Petioles are smooth, greenish or greenish brown in color with small brown spots, the usual length varies from 24.00 to 33.00 cm in case of aerial leaves and 23 to 30cm in case of floating leaves. A transverse cut of the leaf stem always reveals four separate cavities – two large in the center and two small on the periphery – in the petiole. [11,12,13,14,15]

Category	Major compounds	Pharmacological activity
Alkaloids	Nuciferine, Neferine, Liensinine	Anti-obesity, neuroprotective, cardioprotective.
Flavonoids	Quercetin, Kaempferol, Rutin	Anti- oxidant, Hepatoprotective, Anti- inflammatory
Phenolic acids	Gallic acid, Caffeic acid, Chlorogenic acid	Anti-microbial, antioxidant
Tannins and saponins	Nil	Astringent, Anti- diarrheal
Polysaccharides	Lotus leaf polysaccharides	Wound-healing, Immune support

4. LOTUS RHIZOME

The rhizomes have a length of 60-140 cm and a diameter of 0.5 to 2.5 cm. They are smooth, longitudinally straited, with brown patches, and have nodes and internodes. Their color ranges from yellowish white to yellowish brown when freshly cut, it emits a mucilaginous liquid and has numerous bigger cavities, the fracture is fibrous and tough. There is an indistinct odor. The lotus rhizome contains diverse range of bio active compound including alkaloid, flavonoid, phenolics, tannins, polysaccharides, vitamins and minerals. [16,17,18,19,20]

Category	Major compounds	Pharmacological activity
Aporphine alkaloid	Nuciferine	Anti-inflammatory, Anti-oxidant, Anti-
Aporphine alkaloid		obesity, Anti diabetic, Hypolipidemic
Bisbenzyl iso	Neferine, Liensinine, Isoliensine	Anti-arrhythmic, Anti-oxidant, Anti
quinoline alkaloid	Neterine, Liensinne, isonensine	fibrotic
Flavonoid	Quercetin, Kaempferol, Catechin, Myricetin	Anti-oxidant, Anti-microbial,
		Hepatoprotective
Phenolic acids	Gallic acid, Chlorogenic acid, Ferulic acid,	Anti-oxidant, Anti-microbial,
	Caffeic acid	Hepatoprotective, Anti inflammatory
Polysaccharides	Lotus root polysaccharide	Anti-oxidant, Anti-obesity, Anti
		diabetic, Immunomodulatory
Vitamins	Vitamin-c, B-complex[B1,B2,B6], Niacin	Anti-oxidant, Immune boosting,

		Metabolic regulation
Minerals	Potassium, Phosphorus, Iron, Magnesium	Cardioprotective, Anti-hypertensive,
		Blood purifying
Carbohydrate	Dietary fibre	Hypocholesterolemic, Improve digestion

5. LOTUS SEED

The seeds are round to oval in shape, hard, and have a smooth outer testa. They are typically brown to dark brown in color with a small depression at one end. It is 1-1.5 cm long and 0.8-1.2 cm wide. Internally, the seed contains a white, starchy cotyledon and a green embryo located centrally, often referred to as the lotus plumule. The seeds are enclosed in the lotus fruit, which is a spongy, cone-shaped receptacle containing multiple seed chambers.

The seed of lotus are unique among aquatic plants for their hard, long-lived structure and remarkable viability often lasting for centuries. [21,22,23,24,25]

Category	Major compound	Pharmacological activity
Alkaloid	Neferine, Nuciferine, Liensinine,	Antioxidant, Anti-inflammatory,
Aikaioid	Isoliensinine, Lotusine	Neuroprotective, Anticancer
Flavonoid	Kaempferol, Quercetin, Isoquercitrin	Antioxidant, Anti-aging, Anti-inflammatory
Phenolic compound	Gallic acid, Caffeic acid,	Antioxidant Hangtonrotoctiva Antidiahatia
	Chlorogenic acid	Antioxidant, Hepatoprotective, Antidiabetic
Glycosides & Saponins	Flavone glycosides, Steroidal	Immunomodulatory, Cardioprotective
	saponins	minunomodulatory, Cardioprotective
Polysaccharides	Lotus seed polysaccharides (LSPs)	Antidiabetic, Anti-obesity, Immunostimulatory,
Proteins & Amino acid	Essential amino acids, high protein	Nutritional, Muscle maintenance, Metabolic
Proteins & Annio acid	content	support
Vitamins & Minerals	B-complex vitamins, Vitamin C, Mg,	Nutritional Antiquidant Matchalia haalth
vitainins & Minerals	K, P, Zn, Fe, Ca	Nutritional, Antioxidant, Metabolic health

CONCLUSION

Nelumbo nucifera (Lotus) is a sacred and medicinally important plant with remarkable ethnobotanical, pharmacological, and nutritional value. Various parts of the plant—including the root, seeds, leaves, and flowers—contain a wide range of bioactive phytoconstituents such as alkaloids, flavonoids, tannins, phenolic compounds, and glycosides. These constituents contribute to its diverse pharmacological properties, including antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, cardioprotective, antimicrobial, and neuroprotective effects.

Despite extensive traditional use and promising experimental findings, further clinical studies and mechanistic investigations are necessary to validate its therapeutic potential and establish standardized formulations. The integration of modern pharmacological research with traditional knowledge could promote the development of novel plant-based medicines from Nelumbo nucifera, enhancing its role in modern healthcare systems.

REFERENCES

- 1. Kumar S, Palbag S, Mourya S, Kumar D. Skin care in Ayurveda: A literary Review. International Research Journal of pharmacy, 2013; 4(3): 1-3.
- 2. Indian Lotus. Available from: http://www.naturia.per.sg/buloh/plants/lotus.htm.
- 3. WU, F. et al., Phytochemistry of Nelumbo nucifera seeds and their pharmacological activities. Journal of Ethnopharmacology, 2011; 135(2): 234-243.
- Mukherjee, P.K. et al., Pharmacological studies on Nelumbo nucifera seeds. Phytomedicines, 2009; 16(7): 552-560.

- 5. Deng, Y. et al., Flavonoid composition and antioxidant activity in lotus seeds. Food Chemistry, 2013; 139(1-4): 397-403.
- Zhang X. et al., Isolation and immunomodulatory activity of polysaccharides from Nelumbo nucifera seeds. Carbohydrate Polymer, 2020; 240: 116268.
- 7. Sahana A, Sahana R,"Nelumbo nucifera [lotus]: A Review on Ethnobotany, Phytochemistry and Pharmacological". International Journal of Pharmaceutical and Biological Research, 2025; 10(1): 630-642.
- 8. Gani A., Masoodi F.A., Wani S.M., "Characterization of lotus stem [Nelumbo nucifera] starches purified from three lakes of India." Journal of Aquatic Food Product Techology, 2023; 22(5): 605-618.
- 9. Wei X., Zhang M., Yang M., Ogutu C., Li j., et al., "Lotus [Nelumbo nucifera] benzylisoguinoline alkaloids: advances in chemical profiling, extraction methods, pharmacological activities and biosynthetic elucidation." Vegetable Research, 2024; 4: e005.
- 10. "Phytochemical, biological activity and industrial application of lotus.", Frontiers in Nutrition, 2022.
- 11. Paudel KR et al., Frontiers in pharmacology, 2015.
- 12. Wang Z et al., Journal of ethnopharmacology, 2021.
- 13. Li C et al., Journal of Agricultural and Food chemistry, 2011.
- 14. Bishayee A et al., Molecules, 2022.
- 15. Huang CF et al., Molecules, 2020.
- 16. Mukherjee PK,et al., The scared lotus [Nelumbo nucifera] Phytochemical and therapeutic profile. J. Pharm. Pharmacol., 2014; 66(6): 829-844.
- 17. Sripathi SK, et al., Phytochemical analysis and pharmacological properties of Nelumbo nucifera rhizome. J. Pharmacogn. phytochem., 2018; 7(3): 2505- 2510.
- 18. Chen S, et al., Phytochemical composition and antioxidant activity of lotus root extracts. Food Chemistry, 2019; 284: 231-238.
- 19. Zhou Y, et al., Bioactive constituents from Nelumbo nucifera and their health- promoting effects. Phytochemistry Reviews, 2020; 19: 657-670.
- Wang Y, et al., Lotus root polysaccharides: Extraction, structural features, and biological activities. Int. J. Biol Macromol., 2022; 206: 875-887.
- 21. Mukherjee PK et al., Phytomedicine, 2009.
- 22. Rai S et al., Frontiers in Pharmacology, 2020.
- 23. Chen S et al., Food Chemistry, 2019.
- 24. Li J et al., Carbohydrate Polymers, 2021.
- 25. Liu CP et al., Journal of Ethnopharmacology, 2020.