World Journal of Pharmaceutical

Science and Research

www.wjpsronline.com

Research Article

ISSN: 2583-6579 SJIF Impact Factor: 5.111 Year - 2024 Volume: 3; Issue: 5 Page: 156-163

ANTIDIABETIC ACTIVITY OF LEAVES AND ROOT EXTRACTS OF KENYAN POPULATIONS OF DODONAEA VISCOSA ON STREPTOZOTOCIN (STZ) INDUCED **DIABETIC RATS**

Philemon Kibet Langat^{*1}, Elizabeth Wanjiku Njenga¹, Pascaline Jeruto¹ and Catherine Lukhoba²

¹Department of Biological Sciences, University of Eldoret, Kenya.

²Department of Biological Sciences, University of Nairobi, Kenya.

Article Received: 06 August 2024 || Article Revised: 29 August 2024 || Article Accepted: 20 September 2024

*Corresponding Author: Philemon Kibet Langat Department of Biological Sciences, University of Eldoret, Kenya. DOI: https://doi.org/10.5281/zenodo.13870796

How to cite this Article: Philemon Kibet Langat, Elizabeth Wanjiku Njenga, Pascaline Jeruto and Catherine Lukhoba. (2024). ANTIDIABETIC ACTIVITY OF LEAVES AND ROOT EXTRACTS OF KENYAN POPULATIONS OF DODONAEA VISCOSA ON STREPTOZOTOCIN (STZ) INDUCED DIABETIC RATS. World Journal of Pharmaceutical Science and Research, 3(5), 156-163. https://doi.org/10.5281/zenodo.13870796

Copyright © 2024 Philemon Kibet Langat | World Journal of Pharmaceutical Science and Research. This is an open-access article distributed under creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0)

ABSTRACT

Diabetes is a metabolic disorder affecting more than 400 million people worldwide. There are three types of diabetes which includes type I diabetes mellitus (T1D), type II diabetes mellitus (T2D) and gestational diabetes. The disease is associated with polyuria, polydipsia, and glycosuria, and many other underlying conditions. It leads to disability, high financial constraints and ultimately death of the patients. This study therefore intends to seek alternative ways of managing diabetes using herbal remedies. Dodonaea viscosa leaves and roots were collected from Baringo, Elgeyo Marakwet, Uasin Gishu and Kwale counties. They were soaked in ethanol and their antidiabetic activity done on male swiss albino rats. Antidiabetic activity was calculated by a glucometer. T-test was used to compare the activity of the roots and leaves. ANOVA was calculated using F-test to find out the activity of various populations. A comparison of activity of Insulin, 200 mg and 400 mg/kg bw extracts was determined using their means. From the results, D. viscosa has a strong antidiabetic activity. T-test revealed that there was no significant difference between their activities of roots and leaves as evidenced from p > 0.05. Fstatistic (F = 0.545) indicates that the variances between the populations are not statistically different. The p-value (Sig. = 0.742) further confirms this. Insulin led to the highest decrease in blood sugar, followed by plant extract at 400 mg/kg bw and finally 200 mg/kg bw extracts. More research to isolate pure compounds from this rich plant need to be done.

KEYWORDS: Dodonaea viscosa, Diabetes mellitus, Antidiabetic activity, Populations.

INTRODUCTION

Diabetes mellitus, commonly referred to as diabetes^[1] is a metabolic disorder typified by elevated blood sugar levels brought about by deficiencies in either insulin secretion, insulin action, or both.^[2] It is a chronic illness that affects how proteins, lipids, and carbs are metabolized.^[3] It is the most prevalent metabolic illness^[4] and a public health problem affecting more than 400 million people worldwide.^[5,6]

There are three types of diabetes; type I *diabetes mellitus* (T1D), which is dependent on insulin, and type II *diabetes mellitus* (T2D), which is not dependent on insulin^[7], as well as gestational diabetes, which affects women who are pregnant.^[8] T1D, commonly known as "juvenile diabetes" or ketosis-prone polygenic diabetes, affects children and young adults.^[7] T2D is caused by decreased insulin secretion by pancreatic beta cells and poor insulin receptor response.^[9] The cause of gestational diabetes which is a temporary condition affecting 2%-10% of expectant women is not known. It is generally believed that insulin resistance can be brought on by weight gain, hormonal imbalances, and chemicals secreted by the placenta that inhibit the effects of insulin.^[10]

The disease is characterized by polyuria (the large-scale excretion of diluted urine), polydipsia (the excessive consumption of water), and glycosuria (the large-scale excretion of glucose in the urine.^[7] *Diabetes mellitus* is also associated with neuropathy, nephropathy, retinopathy, renal and cardiovascular complications. Insulin replacement therapy is used to treat type I *diabetes mellitus* while oral hypoglycemics are used to treat type II *diabetes mellitus*.^[2] Its treatment with allopathic medicine if faced with challenges including the expensive nature of the medications, the disease's progression, and unfavorable side effects.^[11] Despite the medication provided, the disease may lead to disability, huge financial constraints and ultimately death of the patient.^[12]

The purpose of this study was to evaluate the antidiabetic activity of populations of *Dodonaea viscosa* collected from Baringo, Elgeyo Marakwet, Uasin Gishu and Kwale counties of Kenya using streptozotocin (STZ) induced male rats.

MATERIALS AND METHODS

Study Area

Populations of *Dodonaea viscosa* leaves and roots were collected from Baringo, Elgeyo Marakwet, Uasin Gishu and Kwale counties various regions of the country from 16th may to June 21st 2023. They were transported to the university of Eldoret herbarium for identification by a taxonomist. Some samples were hand-washed in running water, then air-dried for 28 days before ground in readiness for extraction.

Extraction of crude extracts

The protocol developed by^[13], with minor modifications was used in extraction. Populations of *D. viscosa* were extracted by maceration with 80% v/v ethanol solution. 500ml of the solvent was added to 100g of the ground plant material (leaves and root barks) in conical flasks and shaken at 200 rpm for a minimum of 24 hours at a temperature of 25 °C. Following filtration through Whatman No. 1 filter paper, the viscous semisolid masses was dried in a rotary evaporator at 40 °C before being placed in airtight containers for storage at 4 °C.

Breeding of experimental animals

10 male and 18 female Swiss albino mice were bought from the animal house (Kabete campus), university of Nairobi. They were transported to Chiromo campus (University of Nairobi) and placed into 2 cages of 5 males and 9 females in order to breed. After 7 days the males were separated from the females. On giving birth, adult male mice were fed till they weighed 160-200g for the experiment. Male rats were preferred over the females due to the differences that exist in glucose homeostasis between the different sexes and the effects of the Oestrus cycle which may give varying results.^[14] They were then kept in standard environmental settings (24 ± 1 °C) with 12-hour cycles of light and darkness and given a commercial meal and unlimited access to water. The animals were acclimatized for two weeks before the induction of diabetes.

Induction of diabetes

Streptozotocin (STZ) was administered intraperitoneally to male albino mice in groups 4 after being starved for the previous night in order to cause diabetes. One dose concentration of 6.5 mg/100g of STZ freshly prepared in 1ml distilled water were given to each rat.^[15] To confirm stable hyperglycemia, blood samples from the tail vein were taken on days 3 and 7 following injection. Glucose levels will then be calculated using a glucometer (On Call[®] Plus). Male albino mice with blood glucose levels greater than 11 mmol/L were deemed diabetic.^[16,17]

Experimental design

The mice were randomly placed in 5 cages in order to receive different treatments intraperitoneally as shown in Table 1. This was repeated on ethanol extracts of the roots and leaves from different populations.

Animal group	Status	Treatment	No of mice
Ι	Normal control	Vehicle only	4
II	Diabetic control	Vehicle only	4
III	Diabetic	Reference drug (Insulin)	4
IV	Diabetic	200 mg/kg bw extract	4
V	Diabetic	400 mg/kg bw extract	4

Table 1: Experimental study design.

Oral glucose tolerance test (OGTT)

On day 9, the OGTT was conducted to assess the extract's immediate impact on glucose control. After fasting for the previous night, male albino mice in all groups will receive 2 g/kg of body weight glucose orally. A little amount of blood was drawn from the tail vein before and after the administration of the glucose solution (0, 3, 12 and 24 hours intervals), to determine the impact of the plant extract on blood sugar. The results were represented in mmol/L.

Data Analysis

Antidiabetic activity was calculated by a glucometer (On Call[®] Plus) and data tabulated in excel spreadsheet to make sorting of data easier. Paired sample t-test was used to compare the activity of the roots and leaves of *D. viscosa*. Analysis of variance (ANOVA) was calculated using F-test to find out the difference between the means and also give the p-value.

RESULTS

 Table 2: Antidiabetic activity of D. viscosa populations presented as means and standard deviations of 4 males.

			SER	GOIT			GA	ZI		С	HEPY	OGOT	1	k	KABA	RNET			TUF	RBO]	KOR	EMA	
		ROC	DTS	LEA	VES	ROC	DTS	LEA	VES	ROO	OTS	LEA	VES	ROC	DTS	LEA	VES	ROC	DTS	LEA	VES	ROC	DTS	LEA	VES
Treatments	Duration	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD								
	0Hr	7.7	1.2	7.7	1.3	7.4	1.1	7.7	0.2	4.9	0.6	7.0	0.8	7.6	0.7	8.0	0.7	5.4	0.4	7.9	0.6	7.6	0.5	7.3	0.3
nal ol	3Hr	7.9	0.5	8.0	0.4	7.9	0.5	8.1	0.8	5.3	0.5	6.6	0.2	7.6	0.4	7.9	0.6	5.4	0.5	8.0	0.9	8.5	0.3	7.6	0.7
Normal Control	6Hr	8.0	0.1	8.0	0.1	8.3	0.4	7.8	0.6	5.3	0.2	7.5	0.9	7.3	0.5	7.4	0.9	5.6	0.4	8.3	1.1	8.3	0.6	7.2	0.5
йŭ	12Hr	7.9	0.4	7.8	0.6	7.5	0.5	7.8	0.8	5.4	0.4	7.3	0.8	7.5	0.8	7.6	0.9	5.4	0.7	8.5	0.5	8.5	0.5	7.1	0.7
	24Hr	8.0	0.4	7.9	0.6	7.8	0.3	7.7	0.7	5.3	0.2	7.0	0.6	7.9	1.3	7.9	1.1	5.5	0.3	8.6	0.3	8.9	0.7	7.0	0.4
	0Hr	16.7	0.8	18.4	0.8	18.9	1.1	19.8	1.2	19.3	1.3	18.6	1.2	18.8	1.0	19.5	1.7	18.1	2.4	19.8	0.8	18.2	1.8	19.9	1.2
stic	3Hr	18.3	0.8	19.8	1.3	20.3	0.8	20.9	1.4	20.8	1.2	21.2	0.9	21.7	3.4	20.6	1.8	18.9	2.7	21.0	0.7	19.8	0.9	22.1	0.5
Diabetic Controls	6Hr	17.1	0.4	17.6	1.6	18.3	1.1	19.0	0.4	19.4	0.3	22.8	2.9	20.9	1.6	19.7	1.0	18.1	2.4	19.7	0.6	19.7	0.3	20.4	1.4
C Di	12Hr	19.4	0.5	19.8	0.9	20.0	0.6	21.1	1.2	21.1	1.4	21.5	0.8	22.2	3.2	20.1	0.4	21.2	4.6	20.6	0.8	19.5	1.1	21.1	1.4
	24Hr	17.6	0.5	18.6	0.7	19.5	0.3	18.3	1.0	18.8	0.8	19.7	1.1	20.4	1.5	17.6	0.8	21.7	2.9	18.2	0.8	19.0	0.9	20.6	1.3
	0Hr	16.5	0.7	19.0	0.8	15.1	2.6	20.5	2.2	15.2	1.0	19.9	1.3	12.6	1.7	17.4	0.8	18.9	1.0	18.9	1.3	17.9	5.1	17.4	0.9
lin	3Hr	7.0	0.4	6.3	0.3	7.8	1.5	6.8	0.5	9.0	0.3	6.8	0.5	9.0	1.4	6.6	0.5	9.3	0.5	7.3	0.1	8.5	0.9	7.1	1.1
Insulin	6Hr	6.5	0.4	5.7	0.2	6.9	0.5	6.2	0.5	8.5	0.1	6.2	0.6	7.8	0.9	6.2	0.3	8.3	0.4	6.9	0.1	7.3	0.9	6.6	0.6
Ir	12Hr	5.9	0.5	5.1	0.2	5.5	0.5	5.6	0.4	8.2	0.1	5.7	0.3	6.2	0.7	5.8	0.5	8.2	0.5	5.8	0.3	6.1	0.8	5.4	0.5
	24Hr	5.4	0.5	4.4	0.4	5.0	0.3	4.9	0.4	7.9	0.1	5.3	0.3	5.7	0.7	5.5	0.4	7.8	0.4	5.4	0.4	5.3	0.1	5.2	0.2
	0Hr	18.2	0.6	16.8	0.7	16.3	1.3	18.8	0.6	16.2	0.9	17.3	0.8	19.5	1.8	19.4	1.3	19.0	1.5	18.2	0.8	17.4	0.7	18.7	0.9
Extract 200 mg	3Hr	10.8	0.6	7.0	0.2	11.3	1.7	9.2	1.5	22.8	1.3	9.0	1.1	14.4	3.1	13.7	3.9	20.1	1.0	11.5	0.6	12.7	2.5	11.6	2.3
Extract 200 mg	6Hr	8.4	0.7	6.6	0.2	9.8	0.7	8.5	1.0	13.1	0.5	7.7	1.1	11.5	1.3	10.1	2.6	13.0	1.4	9.2	0.4	10.5	0.5	9.9	1.0
Б Е	12Hr	7.3	0.2	5.8	0.5	7.9	0.9	7.1	0.3	11.7	1.2	6.3	0.3	10.5	0.7	8.4	1.2	10.0	0.6	7.7	0.7	8.4	1.5	8.4	1.6
	24Hr	5.7	0.4	5.3	0.4	5.4	0.4	6.1	0.6	8.3	0.9	5.8	0.4	4.8	0.3	6.7	0.6	9.0	1.1	5.1	0.2	5.4	0.4	6.1	0.3
	0Hr	18.8	0.8	17.9	1.4	18.1	2.3	17.1	1.3	23.5	2.6	18.3	1.0	19.8	0.9	19.7	0.9	19.8	1.2	18.8	1.0	22.5	2.9	18.1	1.1
act mg	3Hr	7.0	0.2	6.6	0.5	9.7	0.8	6.6	0.6	20.1	10.5	18.3	2.1	8.2	1.4	10.2	0.7	24.1	1.8	9.0	1.9	10.6	0.8	7.3	0.4
Extract 400 mg	6Hr	6.7	0.2	5.9	0.4	8.7	0.3	6.4	0.6	10.6	0.1	6.8	0.4	7.6	0.8	8.7	0.3	10.3	0.4	7.7	1.0	9.8	0.4	6.8	0.2
Н 4	12Hr	6.4	0.3	5.4	0.5	6.5	0.4	6.0	0.7	10.0	0.4	5.5	0.2	5.6	0.9	6.1	0.6	9.0	0.4	5.8	0.5	6.3	0.4	6.4	0.4
	24Hr	5.9	0.3	5.2	0.5	5.5	0.4	5.7	0.8	6.0	0.2	5.4	0.2	4.2	0.2	5.8	0.7	6.1	0.6	5.4	0.4	4.8	0.5	4.9	0.5

A comparison of the activity of roots and leaves of *D. viscosa* from different populations gave the following results as shown in Table 3.

Population	Mean	Std. Deviation	Std. Error Mean	Interva Diffe	nfidence al of the rence Upper	t	Df	Sig. (2-tailed)
Sergoit Roots & Leaves	.34200	1.24086	.24817	17020	.85420	1.378	24	.181
Gazi Roots & Leaves	.06700	1.63546	.32709	60808	.74208	.2050	24	.839
Chepyogot Roots & Leaves	1.32700	3.83749	.76750	25704	2.91104	1.729	24	.097
Kabarnet Roots & Leaves	.11600	1.64617	.32923	56351	.79551	.3520	24	.728
Turbo Roots & Leaves	1.39100	4.01060	.80212	26449	3.04649	1.734	24	.096
Koriema Roots & Leaves	.46600	1.61511	.32302	20069	1.13269	1.443	24	.162

 Table 3: Comparison of the activity of roots and leaves.

A comparison of the activity of the different populations was also done to find out the most effective population (Table 4).

Table 4: Comparison of the activity different populations.

Donulation	N	Mean	Std.	Std.	95% Confidence	Interval for Mean	Minimum	Maximum
Population	1	Mean	Deviation	Error	Lower Bound	Upper Bound	WIIIIIIIIIII	Maximum
SERGOIT	50	10.4150	5.48297	.77541	8.8568	11.9732	4.40	19.77
GAZI	50	10.9655	5.68194	.80355	9.3507	12.5803	4.88	21.10
CHEPYOGOT	50	11.9975	6.44692	.91173	10.1653	13.8297	4.88	23.50
KABARNET	50	11.5040	5.87524	.83088	9.8343	13.1737	4.22	22.20
TURBO	50	12.0185	6.10100	.86281	10.2846	13.7524	5.10	24.10
KORIEMA	50	11.4230	5.88139	.83175	9.7515	13.0945	4.83	22.45
Total	300	11.3873	5.89691	.34046	10.7173	12.0572	4.22	24.10

From the above results ANOVA was calculated using F-test to find out the difference between the means and also give the p-value. The results were presented as shown in Table 5.

Table 5: ANOVA result.

	Sum of Squares	Df	Mean Square	F	Sig.
Between Groups	95.447	5	19.089	.545	.742
Within Groups	10301.836	294	35.040		
Total	10397.283	299			

A comparison of the activities of Insulin, 200 mg and 400 mg/kg bw extracts on reduction of blood sugar was also determined. Table 6 shows the results obtained.

Table 6. Comparis	son of the activitie	s of Insulin 200 mg	and 400 mg/kg bw extracts.
Table 0. Comparis	son of the activitie	s or msunn, 200 mg a	anu 400 mg/kg Dw Chi acis.

POPULATION		N	Mean	Std.	Std.		onfidence for Mean	Minimum	Maximum	
POPULATION		IN	Witan	Deviation	Error	Lower Bound	Upper Bound	Ivininum	wiaximum	
	Insulin	5	8.2150	4.65684	2.08260	2.4328	13.9972	5.35	16.48	
SERGOIT	200 mg/kg	5	10.0600	4.92064	2.20058	3.9502	16.1698	5.65	18.20	
ROOTS	400 mg/kg	5	8.9450	5.50963	2.46398	2.1039	15.7861	5.88	18.77	
	Total	15	9.0733	4.73326	1.22212	6.4521	11.6945	5.35	18.77	
SEDCOIT	Insulin	5	8.0600	6.12642	2.73982	.4530	15.6670	4.40	18.95	
SERGOIT LEAVES	200 mg/kg	5	8.3100	4.79298	2.14349	2.3587	14.2613	5.30	16.80	
LEAVES	400 mg/kg	5	8.1700	5.43767	2.43180	1.4182	14.9218	5.15	17.85	

	Total	15	8.1800	5.07411	1.31013	5.3700	10.9900	4.40	18.95
	Insulin	5	8.0450	4.11664	1.84102	2.9335	13.1565	4.95	15.13
	200 mg/kg	5	10.1300	4.09197	1.82998	5.0492	15.2108	5.43	16.30
GAZI ROOTS	400 mg/kg	5	9.6650	4.97027	2.22277	3.4936	15.8364	5.53	18.05
	Total	15	9.2800	4.18806	1.08135	6.9607	11.5993	4.95	18.05
	Insulin	5	8.7800	6.59008	2.94717	.5973	16.9627	4.88	20.50
	200 mg/kg	5	9.9200	5.08255	2.27299	3.6092	16.2308	6.05	18.75
GAZI LEAVES	400 mg/kg	5	8.3400	4.92280	2.20154	2.2275	14.4525	5.65	17.13
	Total	15	9.0133	5.21421	1.34630	6.1258	11.9009	4.88	20.50
	Insulin	5	9.7700	3.06275	1.36970	5.9671	13.5729	7.93	15.20
CHEPYOGOT	200 mg/kg	5	14.4000	5.48450	2.45274	7.5901	21.2099	8.25	22.78
ROOTS	400 mg/kg	5	14.0350	7.40715	3.31258	4.8378	23.2322	6.03	23.50
	Total	15	12.7350	5.62882	1.45336	9.6179	15.8521	6.03	23.50
	Insulin	5	8.7650	6.26407	2.80138	.9871	16.5429	5.30	19.93
CHEPYOGOT	200 mg/kg	5	9.2200	4.69735	2.10072	3.3875	15.0525	5.83	17.33
LEAVES	400 mg/kg	5	10.8550	6.80880	3.04499	2.4008	19.3092	5.35	18.30
	Total	15	9.6133	5.62351	1.45199	6.4991	12.7275	5.30	19.93
	Insulin	5	8.2500	2.75051	1.23007	4.8348	11.6652	5.70	12.58
KABARNET	200 mg/kg	5	12.1050	5.39555	2.41296	5.4055	18.8045	4.75	19.45
ROOTS	400 mg/kg	5	9.0900	6.18025	2.76389	1.4162	16.7638	4.22	19.77
	Total	15	9.8150	4.93230	1.27351	7.0836	12.5464	4.22	19.77
	Insulin	5	8.2750	5.10536	2.28319	1.9359	14.6141	5.45	17.38
KABARNET	200 mg/kg	5	11.6350	5.05030	2.25856	5.3642	17.9058	6.65	19.40
LEAVES	400 mg/kg	5	10.0850	5.65289	2.52805	3.0660	17.1040	5.75	19.65
	Total	15	9.9983	5.08767	1.31363	7.1809	12.8158	5.45	19.65
	Insulin	5	10.4850	4.72218	2.11182	4.6216	16.3484	7.78	18.88
TURBO	200 mg/kg	5	14.2150	5.06775	2.26637	7.9226	20.5074	9.03	20.08
ROOTS	400 mg/kg	5	13.8600	7.69051	3.43930	4.3110	23.4090	6.13	24.10
	Total	15	12.8533	5.79952	1.49743	9.6417	16.0650	6.13	24.10
	Insulin	5	8.8500	5.66985	2.53563	1.8100	15.8900	5.40	18.90
TURBO	200 mg/kg	5	10.3300	4.95339	2.21522	4.1796	16.4804	5.10	18.15
LEAVES	400 mg/kg	5	9.3400	5.47459	2.44831	2.5424	16.1376	5.38	18.77
	Total	15	9.5067	5.01641	1.29523	6.7287	12.2847	5.10	18.90
	Insulin	5	9.0100	5.09836	2.28006	2.6795	15.3405	5.30	17.88
KORIEMA	200 mg/kg	5	10.8900	4.55452	2.03684	5.2348	16.5452	5.35	17.43
ROOTS	400 mg/kg	5	10.8000	6.93776	3.10266	2.1856	19.4144	4.83	22.45
	Total	15	10.2333	5.28287	1.36403	7.3078	13.1589	4.83	22.45
	Insulin	5	8.3200	5.13941	2.29842	1.9386	14.7014	5.15	17.40
KORIEMA	200 mg/kg	5	10.9300	4.80193	2.14749	4.9676	16.8924	6.10	18.73
LEAVES	400 mg/kg	5	8.6700	5.32134	2.37978	2.0627	15.2773	4.85	18.05
	Total	15	9.3067	4.86405	1.25589	6.6130	12.0003	4.85	18.73

DISCUSSION

For the entire study, male rats were preferred over the females as they are more responsive to STZ.^[18] Oestrogens produced in females' Oestrus cycle also partly contributes to protection against diabetes.^[19,20] The rats in group I (normal control) had their blood sugar level low (below 11mmol/L) throughout the study period. Those in group II (Diabetic control) remained diabetic (above 11mmol/L) due to the effect of Streptozotocin (STZ) injection. The diabetic rats in group III were treated with insulin hormone making their blood sugar levels significantly reduced to normal. The diabetic rats in groups IV and V were treated with *Dodonaea viscosa* crude extract of leaves and roots at 200mg/kg bw and 400mg/kg bw respectively. The rats in these two groups also registered a drop in their blood sugar levels to normal from the 3rd to the 24th hour.

A comparison of the activity of roots and leaves done using paired sample t-test revealed that there was no significant difference between their activities. This was evident from the level of significance which was >0.05. This could be attributed to the activity of secondary metabolites synthesized by the leaves of plants and subsequent transportation to other organs including the stem.^[21,22]

From table 5, the F-statistic (F = 0.545) indicates that the variances between the groups are not statistically different from each other. The p-value (Sig. = 0.742) further confirms this, as it is greater than the commonly used significance level of α = 0.05. Based on this ANOVA test, there is no enough evidence to conclude that the means of the groups/populations are statistically different.

For all the populations, insulin hormone led to the highest reduction in blood sugar level bringing the blood sugar to the norm. This was followed by the plant extract at 400 mg/kg bw and finally 200 mg/kg bw extracts. Most populations brought about a significant reduction in blood sugar levels except a few populations which were not able to reduce blood sugar below 11mmol/L. These included Turbo roots at 200 mg/kg bw, Kabarnet leaves at 200 mg/kg bw, Kabarnet roots at 200 mg/kg bw and Chepyogot roots at both 200 mg/kg bw and 400 mg/kg bw.

D. viscosa crude extract generally led to a significant reduction in the level of blood sugar from the rats under study. This could be attributed to the combined action of various compounds, including flavonoids, saponins, di- and triterpenes, as well as a mixture of phenolics found in the plant.^[23,24] Biochemical evaluations on *D. viscosa* revealed that the plant has a variety of components such as oils and fats, cyclic and acyclic phenolics, tricyclic flavonoids, steroidal compounds, reducing sugar, cardiac glycosides, and carbohydrates which may also be responsible for this activity.^[25]

CONCLUSION

D. viscosa crude extract has a potential to reduce blood sugar in Swiss albino rats. The activities of the roots, leaves and the different populations were not significantly different.

RECOMMENDATION

We recommend isolation of pure compound to be done on this plant to find out the compound responsible for this antidiabetic activity.

ACKNOWLEDGEMENT

We wish to acknowledge the University of Nairobi, Chiromo campus for allowing us to carry research in their animal house. We also acknowledge the personnel in the animal house for assistance in handling and care of the animals.

BIBLIOGRAPHY

- 1. K. Nagarchi et al., Effect of streptozotocin on glucose levels in albino Wister rats. *Journal of Pharmaceutical Sciences and Research*, 2015; 7(2): 67.
- 2. S. Padhi et al., Type II diabetes mellitus: A review on recent drug based therapeutics. *Biomedicine & Pharmacotherapy*, 2020; *131*: 110708.
- 3. N. Singh et al., A review on diabetes mellitus. The Pharma Innovation, 2016; 5(7, Part A): 36.
- 4. W.H. Gispen and G.J. Biessels., Cognition and synaptic plasticity in diabetes mellitus. *Trends in Neurosciences*, 2000; 23(11): 542–549.

- 5. R. Khursheed et al., Treatment strategies against diabetes: Success so far and challenges ahead. *European Journal of Pharmacology*, 2019; 862: 172625.
- 6. N. Malviya et al., Antidiabetic potential of medicinal plants. Acta Poloniae Pharmaceutica, 2010; 67(2): 113-118.
- 7. L.W. Singh., Traditional medicinal plants of Manipur as anti-diabetics. *Journal of Medicinal Plants Research*, 2011; 5(5), 677-687.
- 8. E.A. Reece et al., Gestational diabetes: the need for a common ground. *The Lancet*, 2009; 373(9677): 1789-1797.
- 9. C.Y. Wong et al., Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. *Journal of Controlled Release*, 2017; 264: 247–275.
- S. Begum et al., Diabetes Mellitus and Gestational Diabetes Mellitus. Journal of Paediatric Surgeons of Bangladesh, 2015; 5(1): 30–35.
- 11. J. Deruiter., Overview of the antidiabetic agents. Endocrine Pharmacotherapy Module, 2003; 3(3): 45-50.
- 12. S. Sukhikh et al., Antidiabetic Properties of Plant Secondary Metabolites. *Metabolites*, 2023; 13(4): 513.
- 13. M. J. A. Mbarga et al., Galleria mellonella (greater wax moth) as an eco-friendly in vivo approach for the assessment of the acute toxicity of medicinal plants: Application to some plants from Cameroon. *Open Veterinary Journal*, 2021; *11*(4): 651-661.
- 14. E. U. Etuk., Animals models for studying diabetes mellitus. *Agriculture and Biology Journal of North America*, 2010; *1*(2): 130-134.
- 15. S. Lanjhiyana et al., Antidiabetic activity of methanolic extract of stem bark of Elaeodendron glaucum Pers. in alloxanized rat model. *Advances in Applied Science Research*, 2011; 2(1): 47-62.
- 16. A.N.M. Mamun-or-Rashid et al., A review on medicinal plants with antidiabetic activity. *Journal of Pharmacognosy and Phytochemistry*, 2014; 3(4): 149-159.
- 17. M.J. Mukundi et al., Potential Anti-diabetic Effects and Safety of Aqueous Extracts of Urtica dioica Collected from Narok County, Kenya. *Pharmaceutica Analytica Acta*, 2017; *08*(05).
- 18. B.L. Furman., Streptozotocin-Induced Diabetic Models in Mice and Rats. Current Protocols, 2021; 1(4): e78.
- 19. A. Díaz et al., "Sex Differences in Age-Associated Type 2 Diabetes in Rats—Role of Estrogens and Oxidative Stress." *Oxidative medicine and cellular longevity*, 2019; 1(2019): 6734836.
- B.L. Furman., Streptozotocin-induced diabetic models in mice and rats. *Current protocols in pharmacology*, 2015; 70(1): 5-47.
- A. Liu et al., Proteomic and metabolomic revealed differences in the distribution and synthesis mechanism of aroma precursors in yunyan 87 tobacco leaf, stem, and root at the seedling stage. ACS omega, 2022; 7(37): 33295-33306.
- 22. K. Yazaki., ABC transporters involved in the transport of plant secondary metabolites. *FEBS letters*, 2006; 580(4): 1183-1191.
- 23. S. Subramanian et al., Wound healing properties of a new formulated flavonoid-rich fraction from *Dodonaea* viscosa Jacq. Leaves extract. *Frontiers in Pharmacology*, 2023; 14: 1096905.
- 24. Z.W. Tong et al., Determination of in vivo biological activities of *Dodonaea viscosa* flowers against CCL4 toxicity in albino mice with bioactive compound detection. *Scientific Reports*, 2021; *11*(1): 13336.
- 25. M.A. Hossain., Biological and phytochemicals review of Omani medicinal plant *Dodonaea viscosa*. Journal of King Saud University Science, 2019; 31(4): 1089–1094.