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ABSTRACT 

Cerebral ischemic strokes account for 85% of all strokes and are a major global cause of death and disability. Even 

if reperfusion treatments like thrombolysis and thrombectomy are routine care, the results are still suboptimal 

because of irreversible neural damage. This review of stroke pathogenesis emphasizes the role and mechanisms of 

inflammation, oxidative stress, and excitotoxicity in the ischemic penumbra. We evaluate diagnostic neuroimaging 

(CT, MRI, PET) to guide treatment and determine whether tissue is recoverable. Emerging therapies like gene 

editing, stem cells, mitochondrial-targeted drugs, and nanomedicine have promise for neuroprotection, despite the 

fact that there are still translational barriers between the bench and the bedside. Customized treatments may be 

possible with the use of AI and omics-based personalized medicine approaches. The primary areas of focus for the 

future include the creation of biomarkers, early detection technologies, and public health campaigns targeting 

modifiable risk factors. To overcome these challenges and improve stroke outcomes worldwide, interdisciplinary 

collaboration is required. 
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INTRODUCTION 

Acerebral stroke is a condition characterized by an obstructed blood supply, leading to oxygen deficiency in the brain 

tissues. Cerebral stroke is a major cause of death and the leading cause of long-term disability in  developed  

countries  (Feigin  et.al.,2014). Approximately 10.3 million new stroke cases, 6.5 million stroke-related deaths, 113 

million stroke-related disability-adjusted life-years (DALYs), and 25.7 million stroke survivors were reported globally 

in 2013 (Feigin et.al.,2014). 75.2% of all stroke-related deaths and 81.0% of the corresponding DALYs lost occurred in 

developing countries, which accounted for the majority of the stroke burden. Stroke is a particularly serious problem in 

Asia, where more than 60% of the world's population resides and many of its countries are "developing" economies. 

Stroke risk factors can be broadly divided into two categories: modifiable and non-modifiable. Age, gender, ethnicity, 

and genetic predisposition are non-modifiable risks; after the age of 55, the incidence doubles every ten years, and men 

are more at risk than women (Katan and Luft, 2018). Up to 90% of stroke cases are caused by modifiable risk factors, 

which include obesity, diabetes mellitus, dyslipidemia, atrial fibrillation, smoking, physical inactivity, high alcohol 

intake, and hypertension (O’Donnell et. al.,2010). The biggest factor is hypertension, which increases the risk of 

stroke by two to four times, whereas atrial fibrillation increases the risk of ischemic stroke by five times because of 

embolic events (Lewington et.al.,2002). Stroke risk is also increased by lifestyle variables such as poor diet and 

psychological stress (Mukharjee and Patil,2011). Reducing the worldwide burden of stroke requires public health 

strategies that focus on these modifiable factors. 

 

I. CLASSIFICATION OF STROKE 

The two primary types of cerebral stroke, hemorrhagic and ischemic, each have unique subtypes and origins. Ischemic 

strokes, which are caused by artery blockage and result in infarction and hypoperfusion in the brain, are considered to 

account for about 85% of strokes. It is further separated into thrombotic stroke by local thrombosis, mainly due to 

atherosclerosis in big or small vessels, and embolic stroke by thromboemboli that originate elsewhere, usually the heart 

or carotid arteries. Cryptogenic strokes, which have no known cause despite much research, and lacunar strokes, which 

are small, severe infarcts caused by occlusion of penetrating arteries, are other categories (Sacco et al., 2013; Adams 

et al., 1993). In around 15% of cases, bleeding into the brain parenchyma (intracerebral hemorrhage, or ICH) or 

subarachnoid space (subarachnoid hemorrhage, or SAH) results in hemorrhagic stroke. SAH is typically caused by 

ruptured aneurysms or arteriovenous malformations, whereas ICH is often linked to vascular anomalies, cerebral 

amyloid angiopathy, or hypertension (van Asch et al., 2010; Sudlow & Warlow, 1997). Other rare types include 

venous strokes caused by cerebral venous sinus thrombosis and transient ischemic attacks (TIAs), which are short 

episodes of neurological impairment without infarction (Easton et al., 2009). These classifications serve as a reference 

for diagnostic and therapeutic procedures, emphasizing the significance of rapid imaging (CT/MRI) to differentiate 

between various stroke types and initiate appropriate treatment. 

 

II. PATHOPHYSIOLOGY OF ISCHEMIC STROKE 

A complex chain of events that leads to energy failure and neuronal injury is initiated by the disruption of cerebral 

blood flow in the pathophysiology of cerebral ischemic stroke. As blood flow drops below 18–20 mL/100 g/min, 

neurons transition from aerobic to anaerobic metabolism, causing adenosine triphosphate (ATP) to be rapidly depleted 

and lactic acid to accumulate (Moskowitz et al., 2010). This energy failure disrupts the Na+/K+-ATPase pumps, 

causing membrane depolarization and an overabundance of excitatory neurotransmitters, including glutamate (Dirnagl 

et al., 1999). The resultant over activation of NMDA and AMPA receptors triggers cytotoxic pathways, including the 



 

532 

World Journal of Pharmaceutical Science and Research                                                        Volume 4, Issue 4, 2025 

www.wjpsronline.com 

activation of lipases, proteases, and the generation of free radicals, resulting in a massive influx of calcium (Lo et al., 

2003). While collateral circulation may allow the surrounding penumbra, an area with marginally sustained perfusion, to 

survive for hours, irreversible necrosis occurs in the ischemic core within minutes (blood flow <10 mL/100g/min) 

(Heiss, 2012). According to Eltzschig and Eckle (2011) and Chamorro et al. (2012), reperfusion injury may 

exacerbate damage by oxidative stress from reactive oxygen species (ROS), inflammation mediated by cytokines 

(TNF-α, IL-1β), and disruption of the blood-brain barrier by matrix metalloproteinases (MMPs). Peri-infarct 

depolarizations, endothelial activation, and microvascular thrombosis all contribute to the damage's prolongation (Shih 

et al., 2013). Modern therapies such as endovascular thrombectomy and thrombolysis aim to protect the penumbra by 

reestablishing blood flow within the therapeutic window (Powers et al., 2019). 

 

2.1 ISCHEMIC PENUMBRA 

The "ischemic penumbra," a key idea in acute ischemic stroke, is the hypo perfused brain tissue that surrounds the 

irreversibly damaged core infarct. This area experiences reduced cerebral blood flow, typically 10–20 mL/100g/min; 

this is insufficient to sustain normal neuronal activity but sufficient to briefly preserve cellular viability (Astrup et al., 

1981). While maintaining ion homeostasis, the penumbra is characterized by electrical failure (loss of neuronal 

activity), in contrast to the infarct core, where energy failure results in fast cell death. As long as blood flow is restored 

within a limited therapy window, the presence of the penumbra emphasizes the potential for tissue preservation. 

 

The transition of penumbra into infarction is caused by a number of pathologic events, such as excitotoxicity, oxidative 

stress, inflammation, and apoptosis. Delays in reperfusion cause irreversible harm because the penumbra eventually 

merges with the infarct core (Heiss, 2011). In order to improve the chance of penumbral salvage, stroke systems of care 

place a high priority on prompt imaging, diagnosis, and treatment; early intervention is still crucial. Future research 

may look more closely at neuroprotective strategies that extend penumbral life in an attempt to enhance outcomes for 

individuals who are unable to receive reperfusion therapy immediately. 

 

III. NEUROIMAGING MODALITIES IN THE DIAGNOSIS OF CEREBRAL ISCHEMIC STROKE 

Cerebral ischemic stroke requires neuroimaging for diagnosis, treatment planning, and management, and data from 

multiple modalities complement each other. The first imaging modality employed in acute stroke cases is still computed 

tomography (CT) due to its accessibility and short acquisition time. According to Wintermark et al. (2013), non-

contrast CT (NCCT) can quickly rule out bleeding and detect early ischemia signs during the first three to six hours, 

such as loss of gray-white matter distinction or the hyperdense artery sign. CT angiography (CTA), which provides 

excellent vision of the intracranial and extracranial vasculature, can be used to identify large artery occlusions that may 

benefit from endovascular therapy (Goyal et al., 2016). The distinction between the infarct core and the salvageable 

penumbra can be made using CT perfusion (CTP) imaging, which maps cerebral blood flow (CBF), blood volume 

(CBV), and mean transit time (MTT) (Campbell et al., 2012).Magnetic resonance imaging (MRI) has a higher 

sensitivity for acute ischemia, particularly when paired with diffusion-weighted imaging (DWI), which can detect 

cytotoxic edema just minutes after a stroke (Lövblad et al., 2004). While the apparent diffusion coefficient (ADC) map 

displays restricted diffusion, perfusion-weighted imaging (PWI) displays the hemodynamic state of brain tissue. 

Particularly over extended periods, the DWI-PWI mismatch concept has changed patient selection for reperfusion 

therapy (Albers et al., 2018). Microbleeds that may influence treatment decisions can be detected by susceptibility-

weighted imaging (SWI), and the cerebral vasculature can be evaluated non- invasively using magnetic resonance 
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angiography (MR angiography). Although PET is not commonly used in the treatment of acute stroke, it provides 

unique metabolic information through tracers such 18F-fluorodeoxyglucose (FDG) and 15O-water. PET can evaluate 

oxygen metabolism and cerebral blood flow, revealing areas of poor perfusion and perhaps recoverable tissue (Heiss et 

al., 2001). The pathophysiology of stroke can be better understood because to new hybrid imaging technologies like 

PET-MRI, which allow for the simultaneous assessment of metabolism, perfusion, and tissue viability (Sobesky et al., 

2005). PET's limited availability and longer acquisition time, however, limit its application to research settings. 

 

IV. CURRENT THERAPEUTIC STRATEGIES 

The current techniques to treating cerebral ischemic stroke focus on neuroprotection and rapid reperfusion to minimize 

brain damage. Although recombinant tissue plasminogen activator (rtPA)-assisted intravenous thrombolysis remains the 

cornerstone of acute treatment, its use is limited by the risk of bleeding and its brief half-life (Powers et al., 2019). It 

begins to function within 4.5 hours of the beginning of symptoms. Large arterial occlusions can now be treated with 

mechanical thrombectomy, which significantly improves outcomes when performed within 6 to 24 hours. This is 

especially true when combined with state-of-the-art imaging to identify tissue that can be saved (Nogueira et al., 

2018). In order to reduce brain damage, current treatments for cerebral ischemic stroke include neuroprotection and 

quick reperfusion. The mainstay of acute treatment is recombinant tissue plasminogen activator (rtPA)-assisted 

intravenous thrombolysis; however, its use is restricted by its short half-life and bleeding risk (Powers et al., 2019). 

Four and a half hours after the onset of symptoms, it starts to work. Nowadays, mechanical thrombectomy, which can 

be finished in 6 to 24 hours, is an effective treatment for large artery occlusions. When paired with cutting-edge imaging 

to pinpoint tissue that can be preserved, this is particularly true (Nogueira et al., 2018). 

 

4.1 EMERGING THERAPIES FOR CEREBRAL ISCHEMIC STROKE: NOVEL APPROACHES BEYOND 

REPERFUSION 

Treatment for cerebral ischemic stroke is developing quickly as a result of a number of cutting-edge therapeutic 

medicines that prioritize precision medicine, neuroprotection, and neuroregeneration. Stem cell therapy has shown 

considerable promise in preclinical and early clinical studies because different cell types, such as neural stem cells 

(NSCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs), can enhance immunomodulation, 

neurogenesis, and angiogenesis. These cells work via tissue repair, paracrine signaling, and mitochondrial transfer. 

Research is being done to optimize the timing and mode of delivery (intravenous, intra-arterial, or intracerebral) in 

order to enhance therapeutic efficacy (Savitz et.al., 2019). Drugs that target the mitochondria are another innovative 

approach to addressing the critical role that mitochondrial dysfunction plays in ischemia injury. Compounds that restore 

bioenergetics, reduce oxidative stress, and inhibit apoptosis, such as SS-31, a mitochondrial-targeted peptide, and 

urolithin A, a mitophagy enhancer, offer neuroprotection beyond the acute phase (Sims et.al.,2020). Nanomedicine has 

created new opportunities for drug delivery by employing prepared nanoparticles to enhance the bioavailability of 

neuroprotective medications, encourage blood-brain barrier (BBB) penetration, and facilitate targeted therapy. For 

instance, lipid-based and polymeric nanoparticles loaded with compounds such as citicoline or anti-inflammatory drugs 

have shown improved efficacy in preclinical stroke models (Teleanu et.al.,2022). Furthermore, as highly targeted 

interventions, gene and RNA - based therapies are being investigated. CRISPR-Cas9 gene editing and RNA 

interference (RNAi) approaches target detrimental pathways such the generation of pro-inflammatory cytokines. The 

potential of microRNA (miRNA) regulators to influence post-stroke recovery processes, including as synaptic 

plasticity and axonal regeneration, is also being studied (Khoshnam et.al., 2017). These treatments, which address 
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both acute injury and long-term functional recovery, constitute a revolutionary move toward individualized stroke 

treatment, even if they are still primarily in the experimental stage. 

 

V. CHALLENGES AND FUTURE PERSPECTIVES 

With ongoing translational gaps in stroke research impeding the creation of efficient treatments, cerebral ischaemic 

stroke continues to be a major worldwide health concern. Numerous neuroprotective drugs have failed in clinical 

trials despite encouraging preclinical results because of variations in animal models and human pathophysiology, 

underscoring the need for better bench-to-bedside approaches (Fisher and Savitz,2022). Advanced neuroimaging, 

proteomics, and genomes are examples of personalized medical tools that offer hope for tailored therapies by accounting 

for individual differences in stroke risk, development, and response to treatment (Bonkhoff and Grefkes,2022). But 

they need to overcome obstacles like prohibitive costs, ethical quandaries, and the challenge of integrating multi-omic 

data if they are to realize their full potential. Early diagnostic and prevention strategies, such as wearable technologies, 

biomarker identification, and AI-driven risk prediction models, are becoming crucial tools for reducing the burden of 

stroke (Bhasin et.al.,2011). Prospects for the future include enhanced public health programs focusing on modifiable 

risk factors and the creation of innovative neurorestorative therapies, such as brain-computer interfaces and stem cell-

based regeneration (Campbell and Khatri,2020). To close these gaps and revolutionize stroke care in the ensuing 

decades, cooperation between researchers, physicians, and legislators will be crucial. 

 

VI. CONCLUSION 

Worldwide, cerebral ischemic stroke continues to be a major cause of death and disability, and converting preclinical 

discoveries into successful clinical treatments is extremely difficult. Due to irreparable neuronal injury, many patients 

continue to experience long-term deficits even after advancements in reperfusion techniques like thrombolysis and 

thrombectomy. Novel therapeutic techniques, including as gene editing, mitochondrial-targeted medications, stem cell 

transplantation, and nanomedicine, present encouraging prospects for neuroprotection and recovery. Nevertheless, 

closing translational gaps, enhancing early detection, and boosting tailored therapy continue to be significant obstacles. 

To increase treatment windows and better functional outcomes, future advancements will rely on interdisciplinary 

cooperation, improved neuroimaging methods, and AI-driven precision medicine. The next ten years may see 

revolutionary developments in stroke care by tackling these issues, which would lessen the disease's worldwide burden 

and enhance patient recovery. 
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