

World Journal of Pharmaceutical

Science and Research

www.wjpsronline.com

Review Article

ISSN: 2583-6579 SJIF Impact Factor: 5.111 **Year - 2025**

> Volume: 4; Issue: 5 Page: 907-913

A REVIEW ON FORMULATION AND EVALUATION OF ISONIAZID **CAPSULE**

^{1*}Datta Balaji Giri, ²Reema Chandrakant Londhe, ³Ganesh Jayram Lamkhade, ³Darshana Suresh Ghadigaonkar, ⁴Roshan Ramesh Rathod, ⁵Mayur Bapurao Meshram

^{1,4,5}Student, Samarth Institute of Pharmacy, Belhe, Pune.

^{2,3}Assistant Professor, Department of Quality Assurance, Samarth Institute of Pharmacy, Belhe, Pune.

Article Received: 21 September 2025 | Article Revised: 11 October 2025 | Article Accepted: 02 November 2025

*Corresponding Author: Datta Balaji Giri

IIMT College of Pharmacy. A.P.J Abdul Kalam Technical University (AKTU), Knowledge, Park 3, Greater Noida, Gautam Budha Nagar-201310, U.P., India. DOI: https://doi.org/10.5281/zenodo.17568592

How to cite this Article: Datta Balaji Giri, Reema Chandrakant Londhe, Ganesh Jayram Lamkhade, Darshana Suresh Ghadigaonkar, Roshan Ramesh Rathod, Mayur Bapurao Meshram (2025). A REVIEW ON FORMULATION AND EVALUATION OF ISONIAZID CAPSULE. World Journal of Pharmaceutical Science and Research, 4(5), 907-913. https://doi.org/10.5281/zenodo.17568592

Copyright © 2025 Datta Balaji Giri | World Journal of Pharmaceutical Science and Research.

This work is licensed under creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0).

ABSTRACT

The drug isoniazid (INH) is a key component of global tuberculosis (TB) control programmes. It is estimated, however, that 16.1% of TB disease cases in the former Soviet Union countries and 7.5% of cases outside of these settings have non-multidrug-resistant (MDR) INH resistance. Resistance has been linked to poorer treatment outcomes, post-treatment relapse and death, at least for specific sites of disease. Multiple genetic loci are associated with phenotypic resistance; however, the relationship between genotype and phenotype is complex, and restricts the use of rapid sequencing techniques as part of the diagnostic process to determine the most appropriate treatment regimens for patients. The burden of resistance also influences the usefulness of INH preventive therapy. Despite seven decades of INH use, our knowledge in key areas such as the epidemiology of resistant strains, their clinical consequences, whether tailored treatment regimens are required and the role of INH resistance in fuelling the MDR-TB epidemic is limited. The importance of non-MDR INH resistance needs to be re-evaluated both globally and by national TB control programmes.

KEYWORDS: Tuberculosis, Resistance, diagnosis, epidemiology, re-evaluted, national.

INTRODUCTION

But TB can come active if your vulnerable system becomes weakened. A weakened vulnerable system may not be suitable to stop the bacteria from growing In this word visual, the genetics, phylogeny, physiology, and pathogenesis mechanisms of Mycobacterium tuberculosis are shown. Mycobacterium tuberculosis is the etiological agent of tuberculosis(TB), the leading cause of death due to a single contagious agent, claiming 1.7 million lives in 2016. Of the

deaths attributable to TB in 2016, 22 passed in people coinfected with HIV, and close to 5 of the 10.4 million incident cases of this complaint were resistant to at least two of the first-line TB medicines. In this word visual, we describe the abecedarian features of the genetics, phylogeny, and physiology of this member of the phylum Actinobacteria, which is associated decreasingly with medicine resistance intermediated by mutations and rearrangements in its single, indirect chromosome. We also punctuate the crucial pathogenesis mechanisms employed by this slow- growing, facultative intracellular bacterium, which include avoidance of host cell concurrence by arrest of the normal macrophage development process. For decades after its preface, the mechanisms of action of the frontal - line antituberculosis remedial agent isoniazid(INH) remained unclear. Recent developments have shown that peroxidative activation of isoniazid by the mycobacterial enzyme KatG generates reactive species that form adducts with NAD and NADP that are potent impediments of lipid and nucleic acid biosynthetic enzymes. A direct part for some isoniazid - deduced reactive species, similar as nitric oxide, in inhibiting mycobacterial metabolic enzymes has also been shown. The combined goods of these conditioning - inhibition of cell wall lipid conflation, reduction of nucleic acid pools and metabolic depression - drive the exquisite energy and selectivity of this agent. To understand INH action and resistance completely, a conflation of knowledge is needed from multiple separate lines of exploration – including molecular inheritable approaches, in vitro biochemical studies and free radical chemistry. Tuberculosis(TB) has reemerged as a major trouble to global public health. Its prevalence is rising, particularly in countries with a high HIV frequence, HIVinfected persons have an increased threat for reactivated idle TB infection, of having new TB infection progress fleetly to active complaint, and of dying during a TB occasion. Since current TB control styles appear shy to help the rise in TB prevalence among HIV- infected persons in settings with high TB frequence, fresh measures are needed. Studies in the late 1980s and 1990s set up that TB" preventative remedy" (treatment of idle TB infection) reduced TB prevalence among HIV- infected persons, at least among those with positive tuberculin skin test results. still, despite recommendations from the World Health Organization(WHO) and the Joint United Nations Programme on HIV/ AIDS in 1998, TB preventative remedy has not been extensively espoused. One handicap to more wide use is the concern that using isoniazid monotherapy to treat idle TB infection could promote isoniazid- resistant TB; a literature review in 1970 concluded that, since the preface of isoniazid in 1952, no substantiation was to support this conclusion. Since also, a number of placebo- controlled trials of isoniazid preventative remedy(IPT) have been conducted, substantially among HIV- infected persons. We carried out a methodical review of studies(in both thepre-HIV and the HIV period) that compared those who entered IPT to an undressed group and reported data on resistance to isoniazid, aiming to assess the effect of primary IPT on the threat of developing isoniazid- resistant TB.

Identification and Selection of Studies

We reviewed the full textbook of all studies assessing the effectiveness of primary IPT(given to persons with no history of TB), applying the following addition criteria:

- 1) Compared prevalence of TB in persons entering isoniazid monotherapy versus those entering no preventative remedy, randomized controlled trial (RCT) or cohort study designs,
- 2) Results of vulnerability testing of positive societies presented for both isoniazid and control groups, so the proportion of resistant strains could be caught on in each group. We barred studies conducted only in children (among whom microbiologic evidence is less common), studies of secondary preventative remedy, and studies, or groups within studies, of persons with" lately active complaint," numerous of whom had preliminarily entered isoniazid. Data were uprooted in duplicate by 2 investigators singly, using a standardized data- collection form. Data included study details (study population and size, design, intervention medicine authority, issues recorded)

and quality measures (e.g., generation and concealment of allocation sequences, bedazzling, duration of and loss to follow- up).

Statistical Analysis

We estimated the prevalence of TB caused by isoniazid- resistant strains independently for the isoniazid and control group of each study by dividing the number of persons with isoniazid- resistant TB by the total number of persons in that group. We chose the prevalence of isoniazid- resistant TB in preference to the proportion of culture-positive TB cases that were isoniazid resistant because prevalence more represents the impact(and threat for transmission) of resistant complaint at the population position. Also, comparison of the proportion of resistant isolates between groups is complicated if the study population includes persons who have idle TB infection with an isoniazid- resistant organism. In the group entering isoniazid, preventative remedy will drop the number of reactivated TB cases attributable to isoniazid-susceptible strains but will have lower effect on resistant strains, which will increase the proportion of resistant strains among posterior cases of active TB. As a result, the proportion of isoniazid- resistant active TB cases will be advanced in the isoniazid group than in the control group, indeed if isoniazid does n't promote new resistance. The analysis involved a number of hypotheticals, epitomized. In studies in which not all TB cases passed resistance testing, we assumed that isolates tested were a arbitrary sample of all TB cases and multiplied the total number of TB cases by the proportion of isoniazid- resistant cases in the sample to estimate the total number of isoniazid- resistant cases. For illustration, if 1,000 persons were aimlessly assigned to isoniazid remedy, active TB developed in 50, 40 of these were tested, and 8 of 40 had isoniazid- resistant isolates, we also estimated a aggregate of $10(50 \times 0.2)$ resistant TB cases and an prevalence of isoniazid- resistant TB of 10 per 1,000 persons. idle infection with isoniazid- resistant TB was inversely distributed between comparison groups. 12 of 13 studies were comparisons of randomized groups; any idle infection with a resistant organism would probably be inversely distributed between comparison groups. Any imbalance due to arbitrary error would be bidirectional and so would affect in summary estimate of relative threat tending towards 1(i.e., being undervalued). Threat for isoniazid- resistant TB performing from recent infection was inversely distributed between comparison groups. Also, any new infection with an isoniazid- resistant organism would probably be inversely distributed between randomized groups. Any imbalance would also affect in summary estimate of relative threat being undervalued. Relative pitfalls(RR) for resistant TB in the isoniazid group compared to the control group were calculated for each study. The redundant variation incurred by slice isolates for resistance was incorporated into the 95 confidence intervals(CIs) of each RR. The RR could be written as the product of 2 rates(the rate of TB prevalence in exposed/unexposed multiplied by the rate of the proportion of resistant cases in the sample tested for the exposed/ unexposed). therefore, the log RR could be expressed as the sum of the logs of these rates, and the friction of the log RR could be calculated by a double operation of a standard formula. (When no resistant cases were set up in 1 of the 2 groups, we added 0.5 to the numerator and denominator of both groups when estimating the threat, and 0.1 to the numerators and denominators when calculating the friction of the rate of proportions. Tests of between- study diversity were performed, and meta- analyses were carried out to decide summary RRs, by using a arbitrary- goods model when substantiation of diversity was set up. In the meta- analysis, we first considered all studies as a single group, also considered independently studies from thepre-HIV period and studies of HIV- infected persons; we hypothecated that HIV- infected persons could be at advanced threat of having resistance develop. When latent TB infection is treated, many organisms are exposed to the medicine. The threat for selection pressure favoring a medicineresistant organism is thus low unless persons have undiagnosed active TB and therefore inadvertently admit monotherapy for active complaint. Active TB may be more delicate to descry among HIV- infected persons, which

could lead to a advanced threat for undiagnosed active complaint. Perceptivity analyses primarily comported of banning from meta- analyses studies a) that had zero resistant cases in a group and b) that were n't RCTs. Publication bias was delved by using channel plots and acclimated rank correlation tests.^[17] All analyses were carried out in Stata interpretation 8.0(Stata Corp., College Station, TX, USA).

MATERIAL

Isoniazide(10 gm) as a API, Eudragit L100/ S100(12.5 gm) as enteric coating agent, as a Fillers used Microcrystalline cellulose(9.5 gm), Magnesium stearate(0.125 gm) as Lubricant, and Aerosol(0.125 gm) as a glidant.

System

- 1. Importing and sizing:- All constituents, including the isoniazid active pharmaceutical component(API), diluents (microcrystalline cellulose), and lubricants(e.g., magnesium stearate, talc), are directly counted and measured according to the master formula.
- 2. Sieving:- The constituents are passed through a fine mesh sieve, generally 40 80 mesh, to break up lumps and insure invariant flyspeck size for better mixing.
- 3. Mixing:- The API (isoniazid) is mixed completely with paddings and disintegrates in a blender.
- **4.** A lubricant (e.g., magnesium stearate or talc) and an voluntary glidant (Aerosol) are added to the grains or greasepaint admixture. These are amalgamated gently to help poor inflow or sticking during stuffing.
- **5. Filling A capsule:-** Filling machine is used to fill the set greasepaint or grains into empty, hard gelatin or cellulose capsule shells. The machine separates the capsule body and cap, fills the body with the specified cure, and also rejoins the cap and body.
- **6. Finishing and examination:-** The filled capsules are polished to remove any loose greasepaint from the outside. They're also audited for weight uniformity, appearance, and proper check.
- **7. Packaging:-** The finished capsules are packaged into fester packs or bottles, along with the applicable patient information. The packaging must be well- sealed and light- resistant to maintain the medicine's stability.

RESULT

Weight

The weight of a size 1 hard gelatin capsule is 76 mg with a lower and an upper weight of 71 and 81 independently. The overall weight distribution for the size 1 capsules was centered on the targeted weight of 76 mg and remained within the specification with a mean weight of 75.6 mg. As anticipated, the overall weight distribution determined as the average weight of 100 capsules was narrower than the individual data and ranged from 73.4 to 76.7 mg. The process capability for the performance(Ppk) was calculated with a Ppk 2.53 grounded on average weight data, which dropped down to a Ppk 0.98 when individual data were assessed. Still, the individual capsule weight data did n't exceed the specification limits but showing individual capsules at the upper and lower limit.

Dimensions

The confines were measured on individual capsules across batches for the capsule cap and the capsule body part. The length specification for the body of a size 1 capsule is $17.60 \text{ mm} \pm 0.44 \text{ mm}$. The lengths were well within the specified dimensional limits of 16.15 and 17.07 mm as the lower and the upper specification for the body. The process capability on individual capsule length was Ppk 1.16. No statistical difference was seen between transparent or white opaque capsules.

Body length distribution of size 1 hard gelatin capsules on individual capsules (n = 8404) (a) and relative length distribution between transparent and white opaque capsules (n = 4,202).

Analogous results were observed for the cap length distribution(specified at $9.78 \text{ mm} \pm 0.46 \text{ mm}$) across batches. The maturity of capsules were centered on the targeted length with no capsule observed at or close to the upper and lower specification of 9.32 and 10.24 mm for the cap, independently, hence the process capability was at Ppk 1.28.

Cap length distribution of size 1 hard gelatin capsules on individual capsules (n = 8,404) (a) and relative length distribution between transparent and white opaque capsules (n = 4,202).

The decomposition time of empty capsules is a quality trait that's used for quality assurance purposes to demonstrate that the decomposition performance of a lozenge form is similar and dependable. Decomposition of the lozenge form is a critical prerequisite for the medicine release and dissolution. The decomposition time for hard gelatin capsules is set at not further than 900 s(15 min). Grounded on the below histogram, the capsule samples determined by visual endpoint (driver's judgment) have a mean of 449 s(7.5 min) a minimum of around 50 s and a outside of around 850 s(14 min). While all data are within the specification the data suggested high variability as they're covering the full range of the specification.

Loss on Drying

The water content of the hard gelatin capsules was determined using the loss on drying system. The water content of hard gelatin capsules was set up to be distributed towards the upper end of the specification, but all fell within the specification limit between 13 and 16 water content.

DISCUSSION

QbD aims to establish a solid product and process understanding to increase the overall product quality and safety. Excipients are considered to be critical input parameter for implicit variability. These variabilities need to be understood and ultimately estimated for their impact on the product and the process to achieve constantly the asked quality and performance. Excipients thus must follow the same QbD principles during their own development and manufacturing. The operation of QbD principles to the hard gelatin capsules as a element to a final medicine product have been performed on a set of suggested CQA and within the recommended storehouse and processing conditions for the capsule of 15 - 25 °C and 35 - 65 RH.

The dimensional and weight specifications are considered critical for the manufacturing of capsule products on the high- speed stuffing machines, which produce up to 250,000 capsules per hour. Dimensional variations can beget issue on the rectification, feeding, opening and ending of the capsules at high speed leading to machine stops and damaged capsules. Other pharmacopoeial capsule specifications like sulfur dioxide, sulfated ash, and lubricant content are less critical but might have an impact on the stability of a specific medicine expression in the hard capsule and should thus be reproducible. As gelatin is deduced from a natural source, there's a threat for microbiological impurity of the empty capsule. The capsule decomposition has been determined as a CQA for the in vivo release of the medicine expression. Hence, the below- defined parameters have been suggested as CQA of the empty capsule because they're considered as "critical" or "crucial" factors for the product quality attributes.

The results give substantiation that the CQA remained well within their specified ranges. Also, the data showed that the variability within and between batches on an average sample, as well as an individual sample base, is represented well by the specification ranges. The data handed cover different capsule batches manufactured over a period of at least 24 months at different locales and thus are considered representative for the routine manufacturing process of empty hard gelatin capsules.

CONCLUSION

The considered CQAs of empty hard capsules have been delved across 42 different batches manufactured over a 24-month period and grounded on data from the routine stability program of the empty hard capsule manufacturing over a period of 9 times. The specifications as set forth by the pharmacopoeia and the capsule manufacturer represent well the functional space for the hard capsule manufacturing during the observed period. The individual capsule data revealed the within and between batch thickness and statistical distribution across the specification range. The decomposition time, which is considered to be a CQA for capsule product performance by visual endpoint discovery, varied significantly between the batches.

REFERENCES

- 1. Almukainz M, Salehi M, Araci Bou-Chacra N, Lobenberg R. Investigation of the performance of the disintegration test for dietary supplements. AAPS J., 2010; 12: 602–7.
- 2. Mary-Ann Archer a, Doris Kumadoh a, Genevieve Naana Yeboah a, Michael Odoi Kyene a, Emmanuel Kofi Kumatia b, Stephen Antwi c, Alfred Ampomah Appiah b.
- 3. P Pandian, K Kannan, M Manikandan, R Manavalan Int J Pharm Pharm Sci, 2012; 4(4): 342-347.
- 4. T Bussemer, R Bodmeier International journal of pharmaceutics, 2003; 267(1-2): 59-68.
- 5. Harshika Awasthi, Dayanandan Mani, Rajendra Nath, Anuradha Nischal, Kauser Usman, Sanjay Khattri Indo Am J Pharm Res., 2014; 4(10): 4093-4099,
- 6. A Srinivasa Rao, Mohd Nayeemuddin, Mohd Abdul Hadi International journal of pharmaceutical and biomedical research, 4(3): 170-176.
- 7. M. Sherry Ku a, Weiyi Li a, Wendy Dulin a, Fran Donahue a, Dominique Cade b, Hassan Benameur b, Keith Hutchison c.
- 8. Sven Stegemann, Paul Connolly, Wayne Matthews, Rodger Barnett, Mike Aylott, Karin Schrooten, Dominique Cadé, Anthony Taylor, Massimo Bresciani AAPS PharmSciTech, 2014; 15(3): 542-549.
- 9. Mary-Ann Archer, Doris Kumadoh, Genevieve Naana Yeboah, Michael Odoi Kyene, Emmanuel Kofi Kumatia, Stephen Antwi, Alfred Ampomah Appiah Scientific African, 2020; 10: e00609.
- 10. T Bussemer, R Bodmeier International journal of pharmaceutics, 2003; 267(1-2): 59-68.
- 11. Graham S Timmins, Vojo Deretic Molecular microbiology, 2006; 62(5): 1220-1227.
- 12. Maria Elvira Balcells, Sara L Thomas, Peter Godfrey-Faussett, Alison D Grant Emerging infectious diseases, 2006; 12(5): 744.
- 13. Harshika Awasthi, Dayanandan Mani, Rajendra Nath, Anuradha Nischal, Kauser Usman, Sanjay Khattr Indo Am J Pharm Res., 2014; 4(10): 4093-4099.
- 14. A Srinivasa Rao, Mohd Nayeemuddin, Mohd Abdul Hadi International journal of pharmaceutical and Biomedical research, 2013; 4(3): 170-176.

- 15. G Reier, R Cohn, S Rock, F Wagenblast Journal of Pharmaceutical Sciences, 1968; 57(4): 660-666.
- 16. Andreas Fery, Richard Weinkamer Polymer, 2007; 48(25): 7221-7235.
- 17. Susanne Krag, Troels T Andreassen Progress in Retinal and Eye Research, 2003; 22(6): 749-767.
- 18. Susanne Krag, Troels T Andreassen Investigative ophthalmology & visual science, 2003; 44(2): 691-696.
- 19. Maria Elvira Balcells, Sara L Thomas, Peter Godfrey-Faussett, Alison D Grant Emerging infectious diseases, 2006; 12(5): 744.
- 20. Haileyesus Getahun, Reuben Granich, Delphine Sculier, Christian Gunneberg, Leopold Blanc, Paul Nunn, Mario Raviglione Aids, 2010; 24: S57-S65.
- 21. Rebecca Lester, Robin Hamilton, Salome Charalambous, Thobeka Dwadwa, Clare Chandler, Gavin J Churchyard, Alison D Grant Aids, 2010; 24: S45-S48.
- 22. Mary Kagujje, Muhau L Mubiana, Eugenia Mwamba, Monde Muyoyeta BMC public health, 2019; 19(1): 1329.
- 23. Philippe Sudre, G Ten Dam, Arata Kochi Bulletin of the World Health Organization, 1992; 70(2): 149.
- 24. JoAnne L Flynn, John Chan Annual review of immunology, 2001; 19(1): 93-129.
- 25. Thomas M Daniel, Joseph H Bates, Katharine A Downes Tuberculosis: pathogenesis, protection, and control, 1994; 13-24.